Run it on Codepen

Rule project files for importing into Corticon.js Studio

Decision Management Community Challenge March-2024
Submitted by: Seth Meldon

Decision Modeling Tool: Progress Corticon.js

Prompt

Decision models (similarly to databases) frequently deal with analysis of collections of objects. Here is an example. Let’s help an HR office create
a rules-based service to analyze its employees. Each employee has a unique name, age, gender, marital status, locations (places of residence),
number of children, salary, and probably more attributes. This information is coming to the service as a JSON request such as in this file. Your
service should find answers to the following questions:

e What is the current total number of employees?

e How many children all employees have? How many children does the average employee have?
e Whatis an average salary? What is the maximal and minimal salaries?

e How many employees are single?

¢ In which states do the employee have residences?

e How many people are inside 20% of highest paid employees? Who are these high-paid employees?

https://codepen.io/SethMeldon/pen/mdgKaKN
https://github.com/corticon/corticon.js-samples/tree/master/Importable-Rule-Projects/Transactional-Rule-Project-Samples/March-2024%20DM%20Community
https://github.com/DMCommunity/dmcommunity_shared/blob/master/Employees.json

Approach Taken

All rules are defined rulesheets, the blue nodes in the screenshot below, sequenced into a Ruleflow. The ruleflow is what is generated into a self-
contained JavaScript decision service file.

B Initialize Values & Group each list of employee zips B Remove zipcode entity
B Create States and Zipcodes @ Create list of employee zipcodes B Remove state entity
B Group people into zipcodes B Create list of employee states

1 - Generate Rule Vocabulary from Employees.json

The structure of the JSON in the provided JSON file is downloaded, and generated into the Corticon.js Rule Vocabulary.

https://docs.progress.com/bundle/corticon-js-quick-reference/page/Rulesheets.html
https://docs.progress.com/bundle/corticon-js-quick-reference/page/Ruleflows.html
https://docs.progress.com/bundle/corticon-js-integration/page/About-Corticon.js-integration.html
https://docs.progress.com/bundle/corticon-js-rule-modeling/page/Use-JSON-to-generate-a-vocabulary.html

AT LI 0 e VI L S VT YIS U LY WS e

¢t Vocabulary Window Help

EY
y @
c(

Add Domain

Add Entity E
Add Attribute >
Add Association...

Find References

Refactor... B 4n ~al

[0] Emplolﬁes.json

Populate Vocabulary From JSON...

Report...
n

=

type filter text

Basic Properties

v @ Demo
v & Company
= companyName
=l selectedZipCode
~ employees (Employees)
v & Employees
= age
= children
= gender
=l maritalStatus
= minor
= name
= salary
€ locations (Locations)
~ & Locations
=id
= state
= street
=l zipCode
v = Root
— company (Company)

Property Name Property Value
Association Role Name employees

Source Entity Name Company

Target Entity Name Employees
Cardinalities 1->*

Navigability Company->employees
Mandatory No

JSON Properties

JSON Element Name

employees

2 - Add any needed additional fields to rule vocabulary

The JSON didn't already have fields needed to store the values that are being solved for (average salary, number of children etc), so these are
added to the generated vocabulary. Shown below, the added vocabulary attributes are highlighted. The vocabulary attributes with an asterisk
next to them are transient attributes. Transient attributes are used as “intermediate” value holders that do not need to be returned in a
response.

~ H Root

~ = Employees

= age

= children

= gender

= highSalaried

= maritalStatus

= minor

= name

=l salary

7~ company (Company)
-€ |ocations (Locations)

= avgChildren

=l avgSalary

=l childrenCount

= done *

= employeeCount

=l maxSalary

= minSalary

=l percentileCount

=l percentilelndex

=l percentileNames

=l percentileQuery

=l percentileValue

=l singleCount

= stateCount™

=l states

=l zipCount

=l zips

— company (Company)
-¢ states_1 (States)

-€ zipcodes (Zipcodes)

v = States
= name#®
7- root (Root)
v = Zipcodes
= members *
= summary *
= value *
-€ employees (Employees)

3 - Rulesheets specify rules to change the data and create new data elements

Corticon rules are modeled in decision tables by dragging and dropping elements of the vocabulary onto a table and defining any number of
conditions which when met result in any number of actions:

If this field/ statement L

Resolves to this

To this field S LLE Assign this
value/calculation

Rulesheet 1 — Specifies default values if not provided in input payload (if desired percentile value is not passed in up front, then assign the
percent to be the value specified in the prompt of 80%).

g UULGUUIGI}".CLUIC L IuvvLErnn e nnLers o
Conditions 0 e —
a |If the field Root.percentileQuery = null
h
Actions |
Post Message(s)
A |Set Root.percentileQuery to 80

Rulesheet 2 —

Here's where things start getting interesting. Here, we are starting to define rules that apply to collections, not just individual entities.

Scope Conditions 0
v = Root z o
» 47 Filters b Column 0 = Action Only Rules
= avgChildren i (in all cases these actions will be executed)
Savgsalary
= childrenCount Actions I—
= employeeCount Post Message(s)
= maxSalary A RootemployeeCount allEmployees->size
= minSalary B Root.childrenCount allEmployees.children->sum
& percentileindex ; Eoot.avg(sihllldren aIIﬁgﬁplcljyees.chllldren—>avg
= percentileNames oot.a.vg alary allEmployees.sa ary—>.avg
. E RootsingleCount singleEmployees->size
=i percentileQuery
= eVl F RootmaxSalary allEmployees.salary->max
p.ercentl eValue G RootminSalary allEmployees.salary->min
=i singleCount H employeeStates+=States.newUnique
B stateCount [name=places.state]
=l states | RootstateCount employeeStates->size
=l zipCount) zips+=Zipcodes.newUnique
~ — company (Company) [value=places.zipCode]
» 47 Filters RootainC - -
> -€ employees (Employees) [allEmployees] ootzip ourllt - zips=>size
. < | Empl inaleEmol L Root.percentileindex=(((Root.percentileQuery)*(Root
. employees (Employees) [singleEmployees] .employeeCount+1))/100).tolInteger
~ =€ states_1 (States) [employeeStates]
= name M Root.percentileValue allEmployees->sortedBy(salary)- > at{Root.percentilelndex).salary
Filters
singleEmployees.maritalStatus="Single’
17 I~
0
Filter rows:
1. Create alias Single for all instances of Root. company.employees where Employee.maritalStatus = 'Single’
Action Rows:

A) Set the current total number of employees (Root.employeeCount) to count the number of individual employee records

https://docs.progress.com/bundle/corticon-js-rule-modeling/page/How-to-use-aliases-to-represent-collections_2.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Size-of-collection.html#Size-of-collection

B)
Q)
D)
E)
F)
G)
H)
1)
)
K)
L)

Set total children for all employees (Root.childrenCount) to the sum each employee's children

Set the average children per employee (Root.avgChildren) to be the average of all employees' children

Set the average salary per employee (Root.avgSalary) to be the average of all employee salaries

Set the count of single employees (Root.singleCount) to be the size of the collection of employees in the collection alias Single
Set employees' max salary (Root.maxSalary) to be the maximum of all values for Employee.salary

Set employees' min salary (Root.minSalary) to be the minimum of all values for Employee.salary

Create unigue entities (no duplicates) of all states where employees live

Set the Root. stateCount field to the size of all state entities

Create unique entities (no duplicates) of all zip codes where employees live

Set the Root.zipCount field the size of all zip code entities

Set Root.percentileIndex to the outputof (Root.percentileQuery /100) * (Root.employeeCount+1)

M) Sort employees by salary, and set Root.percentileValue to the salary of the employee that is the value of

Root.percentileIndex in the list

https://docs.progress.com/bundle/corticon-js-rule-language/page/Sum.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Average.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Maximum-value-COLLECTION.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Minimum-value-COLLECTION.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/New-unique.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Sequence.html

Rulesheet 3:

Scope
~ = Root
v 47 Filters
% matchingZip.locations.zipCode=Root.zipcodes.value
7 highSalaried.salary>Root.percentileValue
=l percentileCount
=l percentileValue
= zipCount
= zips
v — company (Company)
» 47 Filters
» € employees (Employees) [highSalaried]
» € employees (Employees) [matchingZip]
v =€ zipcodes (Zipcodes)
» 4# Filters
= members
=l value

-¢ employees (Employees) [applicableEmployees]

Filters

matchingZip.locations.zipCode=Root.zipcodes.value
it |

__ highSalaried.salary>Root.percentileValue
2 i

Filter rows:

3 3 — A — — TWQ +~o 0O n T

Comman

Conditions

Actions
Post Message(s)
applicableEmployees + =matchingZip

Root.zipcodes.members=applicable
Employees->size

highSalaried.highSalaried
Root.percentileCount

T
highSalaried->size

1. Create alias of matchingZip for all instances of Root . company .employee with the same zipcode as the newly create zipcode entity's

attribute value.

2. Create alias of highSalaried for all instances of Root.company .employee greater than Root.percentileValue

Action Rows:

A) Add all members of the collection with the alias matchingZip to the collection with the alias applicableEmployees

https://docs.progress.com/bundle/corticon-js-rule-language/page/Associate-elements.html#Associate-elements

B) Set the value of Root.zipcodes.members to be the size of the employees in the applicableEmployees collection alias

Q) Set the boolean field Employees.highSalaried to true for all instances of the Employees entity that meet the criteria for the
highSalaried alias
D) Set Root.percentileCount to the size of all employees for which Employees.highSalaried = true
Rulesheet 4:

Here, we're building out a sentence dynamically to create a comma separated list of each state in which employees live. The higher the number
of states, the more content that gets added tot the sentence.

Scope Conditions 12| 3 |45 |6 7 8
~ £ Root a Root.stateCount 1.2 3 4 5 6 7 8

= avgSal
avgaiary Actions e

Post Message(s)
A Root.states="Employees live in the following states: ' +

= percentileIndex
= stateCount

= states empStates->sortedBy(name)->at(1).name
— company (Company)

v € states_1 (States) [ernpStates]é B Root.states+=", '+empStates->sortedBy(name)->at(2).name

= name C Root.states+=", '+empStates- >sortedBy(name)- >at(3).name

D Rootstates+=", '+empStates- >sortedBy(name)- >at(4).name

E Rootstates+=', '+empStates->sortedBy(name)->at(5).name

F Root.states+=", '+empStates->sortedBy(name)->at(6).name

G Rootstates+=", '+empStates- >sortedBy(name)- >at(7).name

H Root.states+=", '+empStates- >sortedBy(name)- >at(8).name

Rulesheet 5:

Here, we're again dynamically building out lists based upon the number of members of collections. The collection of employees for whom

highSalaried=T is classified again into an alias highSalaried. Note that in the top left pane that the field under 'Filters' is grayed out—this is
because after we created this alias, we disabled it from acting like a filter. We call this a 'limited filter'—basically it will won't eliminate any data
from evaluation by Corticon in this rulesheet, but simply allows us to refer to this subset of Employees without filtering out the Employees that

are not part of this collection.

©*Flower @ *states.ers

Scope
~ & Root
~ 47 Filters

=l avgSalary
= percentileCount
= percentilelndex
= percentileNames
= percentileQuery
= stateCount
= states
= zipCount
= zips
~ = company (Company)|
> < Filters
v -¢ employees (Employees) [highSalaried]
> 47 Filters
=l highSalaried
=l name
» € zipcodes (Zipcodes) [allZips]
> EZipcodes
Filters|
17 highSalaried.highSalaried=T
2

2

Filter rows:

@ *employees by zip.ers x

- ® O 0 T o

Conditions
allZips.employees->size
Root.percentileCount

Actions
Post Message(s)
allZips.summary =

(allZips.employees->size).toString +

employee lives in the zip code * +
allZips.value + ' : * + cellValue + .*

allZips.summary =

(allZips.employees->size).toString + *

employees live in the zip code " +
allZips.value + ': ' + cellValue + "

Root.percentileNames =
Root.percentileCount.toString + "1
employees have a salary in the top *
+Root.percentileQuery.toString+ '
percentile: '+ cellValue + *.'

allZips.employees.name

allZips.employees->
sortedBy(name)->at
(1).name +°, ' +
allZips.employees->
sortedBy(name)->at
(2).name

allZips.employees->sortedBy(name)-> | allZips.emp
at(1).name + ', ' + loyees->so
allZips.employees->sortedBy(name)-> | rtedBy(nam
at(2).name+ ', ' + e)->at(1).na

allZips.employees->sortedBy(name)-> 'me + ', ' +
at(3).name allZips.em...

allZips.employees- >sortedBy(name)- >
at(1).name +°, ' +
allZips.employees->sortedBy(name)->
at(2).name+ ', ' +
allZips.employees->sortedBy(name)->
at(3).name+ ' + allZips.employees-...

1. Create alias of highSalaried for all instances of Root . company . employee where the boolean attribute highSalaried=T

Action Rows:

A) If the number of employees associated with a given zip code entity is 1, assign that zipcode's Zipcodes. summary field to be 'One
employee lives in the zip code [Zipcodes.value] : [name of the one employee associated with this zipcode]'

https://docs.progress.com/bundle/corticon-js-rule-modeling/page/Limiting-filters.html

B)

If the number of employees associated with a given zip code entity is 2, assign that zipcode's Zipcodes. summary field to be 'Two

employee live in the zip code [Zipcodes.value] : [name of the first employee associated with this zipcode], [name of the second
employee associated with this zipcode]'... This pattern continues for up to 9 employees per zip code.

If the number of employees in the collection highSalaried entity is [1,2,3,4,5], set Root . percentileNames field to be '[1,2,3,4,5]

employees have a salary in the top Root . percentileQuery percentile: [Name of employee 1 of highSalaried collection, ... name
of employee 5 in highSalaried collection]'

Rulesheet 6:

Scope
~ = Root
=l done
=i states
=l zipCount
=l zips
~ € zipcodes (Zipcodes) [allZips]
= summary
=l value

3 Filters
1

© ~ @ L AW

Action Rows:

a
b
c
d
e
f
9
h
i
j
k
|
m
n
o

—IomMmgOnN ® >

Conditions 0 1 2 3 4 5 6 7 8 9
Root.zipCount

Actions L __|
Post Message(s)

Root zips=allZips->sortedBy(value)- >at(1).summary

Root zips+ =allZips->sortedBy(value)->at({2).summary
Root.zips+=allZips->sortedBy(value)->at(3).summary

),
Root.zips+=allZips->sortedBy(value)->at{4). summary
Root.zips+ =allZips->sortedBy(value)->at(5).summary
Root.zips+=allZips->sortedBy(value)-> at(6).summary

)_

)_

),

EEEEE
HEEEEE

HEEEEEER

Root.zips+=allZips->sortedBy(value)->at(7).summary
Root.zips+=allZips->sortedBy(value)->at(8).summary
Root zips+ =allZips->sortedBy(value)->at{9).summary

HEEEEEEE
HEEEEEEERE

A) If the value of Root.zipCount is 1, then set the string attribute Root.zips to be the summary field for the 1 zipcode

B)

If the value of Root.zipCount is 2, then set the string attribute Root.zips to be the summary field for the first zipcode + the

summary field of the second zipcode... This pattern continues for up to 20 zipCodes.

Rulesheet 7:

= e Lonamons U

type filter text

~ & 'Vocabulary
» = Company
» & Employees
» A Locations
» = Root
= States
= Zipcodes
= members

.

=l (o RIS B o RN W = pll -]

<

e =o | ==

= summary
= value I
» € employees (Employees)

o s |3

Actions m
Post Message(s)

0
o
pd

& Rule Operators Zipcodes.employees-=7Zipcodes.employees

v = Attrihute Qneratars

[s=}

Zipcodes.remove

Action Rows:

A) Disassociate the collection employees from being children entities to the Zipcodes entity
B) Eliminate the Zipcodes entity

https://docs.progress.com/bundle/corticon-js-rule-language/page/Disassociate-elements.html
https://docs.progress.com/bundle/corticon-js-rule-language/page/Remove-element.html

Rulesheet 8:

Action Rows:

A) Eliminate the States entity

type filter text

~ & Vocabulary

*

5

=

<

& Company
= Employees
= Locations
= Root
= States
= Zipcodes
= members
= summary
= value
» € employees (Employees)

&®Rule Operators *

om o O N T oW

— | f— | =

o = 3

=

LUIUILIT D

Actions
Post Message(s)
States.remove

Verify outputs in Ruletest

1. We can import the same JSON document from the prompt into a Corticon Ruletest in order to verify the result and audit the
sequence/nature of the changes all of the rules made.

Ruletest Window Help
Testsheet > & Add Testsheet..

it Cases.ert * @ *Restore structu

. b RunAll Tests

&l Change Test Subject...
B Run All Tests with Rule Trace
Report...
Copy Testsheet
Remove Invalid Nodes

© Rename Testsheet..

Add Comment to Testsheet..

Import > JSON from Fie..
Data > :
5 Execution Properties >
B Deploy
b RunTest
Bl Run Test with Rule Trace

Output Validation >

2. This data will be fed into the input payload, which will be run againstv the Ruleflow containing all 8 rulesheets and their rulesheets.

type filter text [March-2024 DMCommunity/Flow.erf Differences: 0

~ @ Vocabulary Input Output st
X Company ~ S Root [1]
a Empl-ﬂyses « + company (Company) [1]
= Locations = companyName [ABC]
= Root o selectedZipCode [08817]
i States ~ o employees ([Employees) [1]
~ B Zipcodes = age [25]
= members =i children [2]
=l summary =l gender [Female]
= value

=l maritalStatus [Married]
~ employees (Employees) = minor [fase]
= name [Robinson]
= salary [220000.000000]
~ o locations (Locations) (1]
= id [RobinsonLoc1]
= state [NJ]
= street [Main Str]
= zipCode [08831]
o locations (Locations) [2]
= id [RobinsonLoc2]
= state [FL)
= street [Ocean Drive]
= zipCode [33019]
~ + employees (Employees) [2]
=l age [45]
= children [0]
= aender [Malel

https://docs.progress.com/bundle/corticon-js-quick-reference/page/How-to-import-a-JSON-document-to-a-testsheet.html
https://docs.progress.com/bundle/corticon-js-quick-reference/page/Choose-a-test-subject-in-the-Studio-workspace.html

3. Optionally, we can define expected outputs. When we run the test, we can toggle through each difference between expected and actual

outputs.

type filter text

~ & Vocabulary

= untited_1

/March-2024 DMCommunity/Flow.erf

Differences: 0

Input Output Expected
© & Company « = Root [1] ~ H Root [1]
3 z Empl(.)yees ~ <= company (Company) [1] =l avgChildren [1.000000]
* © Locations = companyName [ABC] =l avgSalary [134583.333333]
» B Root B selectedZipCode [08817] 8 childrenCount [17]
’ z STates v+ employees (Employees) [1] = done [true]
Zipcodes =l age [25] = employeeCount [12]
= members = children [2] =l maxSalary [220000.000000]
& summary = gender [Female] = minSalary [40000.000000]
=l value

» € employees (Employees)

=l maritalStatus [Married]
=l minor [false]
=l name [Robinson]
=l salary [220000.000000]
~ + |ocations (Locations) [1]
=l id [RobinsonlLoc1]
=l state [NJ]
=l street [Main Str]
= zipCode [08831]
~ ¢ |ocations (Locations) [2]
=l id [Robinsonloc?]
=l state [FL]
=l street [Ocean Drive]
= zipCode [33019]

v« employees (Employees) [2]

=l age [45]
=l children [0]

=l percentileCount [2]

= percentilelndex [10.000000]

=l percentileNames [2 employees have a salary in the top
=l percentileQuery [80.000000]

= percentileValue [195000.000000]

=i singleCount [5]

=l stateCount [3]

= states [Employees live in the following states: CA, FL, N.
= zipCount [5]

v <= company (Company) [1]

= companyName [ABC]

= selectedZipCode [08817]
» o employees (Employees) [1]
» ¢+ employees (Employees) [2]
» <= employees (Employees) [3]
» o employees (Employees) [4]

>« employees (Employees) [5]

4. When we run the test, all of the rules in the ruleflow are generated into a JavaScript bundle and tested locally within the Corticon Studio
ruletest. This JavaScript bundle generation step mirrors the actual deployment of a ruleflow to a decision service, so there is no
distinction in behavior between results in test cases and live services.

| & p B

byzit T
ya Run Testr .

https://docs.progress.com/bundle/corticon-js-rule-modeling/page/Review-test-results-when-using-the-Expected-panel.html
https://docs.progress.com/bundle/corticon-js-quick-reference/page/Execute-tests.html

5.

/March-2024 DMCommunity/Flow.erf
Input
~ &= Root [1]
v < company (Company) [1]
= companyName [ABC]
= selected”ZipCode [08817]
v+ employees (Employees) [1]
= age [25]
=l children [2]
= gender [Female]
= maritalStatus [Married]
=l minor [false]
=l name [Robinson]
=l salary [220000.000000]
~ + |locations (Locations) [1]
=l id [RobinsonLoc1]
= state [NJ]
=l street [Main Str]
= zipCode [08831]
~ o |ocations (Locations) [2]
=l id [RobinsonLoc2]

=l bt TC1T

Output

= avgChildren [1.416667]

= avgSalary [134583.333333]

=l childrenCount [17.000000]

= done [true]

= employeeCount [12]

= maxSalary [220000.000000]

= minSalary [40000.000000]

= percentileCount [2]

= percentilelndex [10.000000]

= percentileNames [2 employees hay
= percentileQuery [80.000000]

= percentileValue [195000.000000]
= singleCount [5]

= stateCount [3]

= states [Employees live in the folloy
= zipCount [5]

~ < company (Company) [1]

= companyName [ABC]

Differences: 1 QOO0

Expected
~ B Root [1]
= avgChildren [1.000000]
= avgSalary [134583.333333]
=l childrenCount [17]
= done [true]
= employeeCount [12]
= maxSalary [220000.000000]
= minSalary [40000.000000]
= percentileCount [2]
= percentilelndex [10.000000]
= percentileNames [2 employees have a salary in
=l percentileQuery [80.000000]
= percentileValue [195000.000000]
= singleCount [5]
= stateCount [3]
= states [Employees live in the following states: (
= zipCount [5]
v <= company (Company) [1]
= companyName [ABC]

If we run the test once more, this time with 'Rule Trace', we'll see the entire sequence and nature of the changes to the input payload.

The last column points us to the name of the rulesheet and rule number which produced each change.

P
Ql_ === I PRy B
Run Test with Rule Trace |

https://docs.progress.com/bundle/corticon-js-rule-modeling/page/Trace-rule-execution.html?labelkey=product_corticonjs

A"
Seque...

W~ kWMo

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Action

Update Attribute
Update Attribute
Update Attribute
Update Attribute
Update Attribute
Update Attribute
Update Attribute
Update Attribute
Update Attribute
Add Entity

Add Association
Update Attribute
Add Entity

Add Association
Update Attribute
Add Entity

Add Association
Update Attribute
Add Entity

Add Association
Update Attribute
Add Entity

Add Association
Update Attribute
Add Entity

A oA

Element Old Value
Root [1]/percentileQuery

Root [1]/employeeCount
Root [1]/childrenCount
Root [1]/avgChildren
Root [1]/avgSalary
Root [1]/singleCount
Root [1]/maxSalary
Root [1]/minSalary
States [1]/name

States [1]

Root [1]/states_1
States [2]/name

States [2]

Root [1]/states_1
States [3]/name

States [3]

Root [1]/states_1
Zipcodes [1]/value
Zipcodes [1]

Root [1]/zipcodes
Zipcodes [2]/value
Zipcodes [2]

Root [1]/zipcodes
Zipcodes [3]/value
Zipcodes [3]

n wTavr ot 1

New Value

80

12

17
1.41666666666...
134583.333333...
5

220000

40000

NJ

States [1]
FL

States [2]
CA

States [3]
08831

Zipcodes [1]
33019

Zipcodes [2]
08817

Association Entity Location

init: 1

Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :
Classifications :

Classifications :

—~ g

A0
BO
co
DO
EO
FO
GO
HO
HO
HO
HO
HO
HO
HO
HO
HO
Jo
Jo
Jo
Jo
Jo
Jo
Jo
Jo

o

164
165
166
167
168
169
170
171
172
173
174
175
176
177

NEHIUVE A3sULIaUUN
Remove Association
Remove Association
Remove Association
Remove Association
Remove Association
Remove Association
Remove Entity
Remove Entity
Remove Entity
Remove Entity
Remove Entity
Remove Entity
Remove Entity
Remove Entity

LipLuues oy s HpUySes
Zipcodes [5]/employees
Zipcodes [5]/employees
Zipcodes [5]/employees
Zipcodes [5]/employees
Zipcodes [5]/employees
Zipcodes [5]/employees
Zipcodes [1]
Zipcodes [2]
Zipcodes [3]
Zipcodes [4]
Zipcodes [5]
States [1]

States [2]

States [3]

[
[
[
[
[
[

LUy e U]
Employees [7]
Employees [8]
Employees [9]

[

[

Employees [10]

Employees [11]
[

Employees [12]

D UIT SuuCwul e .
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :
Restore structure :

Restore structure :

PtV

AO
AO
A0
AO
A0
AO
BO
BO
BO
BO
BO

Restore structure2 : AQ
Restore structure2 : AO
Restore structure2 : AO

Package Rules for Deployment
All that remains is to deploy our ruleflow into a runnable Corticon.js JavaScript Decision Service Bundle.

B Classifications #& employees by zip @ Restores c Package Rules for Deployment

Generate Ruleflow for JavaScript

Select the ruleflow and target platform for JavaScript Dep

B zips B states
Ruleflow: ‘ March-2024 DMCommunity\Flow.erf ~
Al ? Target platform: ‘ ~
B Select > AWS Lambda
% Arrange Al Bundle name: |5, 1o Functions
View >
To directory: Co— rticon.js-sar
% Zoom > Y Google Cloud“¥unctions rticonyjs-sar
Statements > L Rule Messages MRule Trac @ packaae Rules for Deployment... MarkLogic
gl\'v Node

Run this decision service in your browser

Rule Trace Data at Runtime

A final note — the runnable sample can be easily tweaked to return the rule trace data (same rule trace data as we saw in the ruletest) in the
response payload. In the HTML in the top left of the Codepen sandbox, simply add the executionMetrics configuration setting as shown,
then re-run the decision service:

storage
¥
const configuration = {

Metrics: tr._|

32 A/ const configuration = {

https://codepen.io/SethMeldon/pen/mdgKaKN

