
Challenge January 2024
Family Riddle

A solution with chatGPT and docplex CPLEX by Alex Fleischer
afleischer@fr.ibm.com

I am relying on free ChatGPT 3.5 and my first attempt was to use
ChatGPT to generate an OPL CPLEX model since in 2022, I
managed to use ChatGPT to generate a nice OPL CPLEX model as
can be read at https://www.linkedin.com/pulse/optimization-zoo-
openai-chatgpt-alex-fleischer/

But the generated OPL CPLEX model is not good enough so that I
could improve it. (Garbage)

int numChildren = 6;
range Children = 1..numChildren;
int ages[Children] = [1, 2, 3, 4, 5, 6];

dvar boolean isGirl[Children];

minimize sum(i in Children) (ages[i] * ages[i]);

subject to {
 // Constraints related to the number of girls and boys in each
family
 count(isGirl, 1) == 3; // Three girls in each family
 count(isGirl, 0) == 3; // Three boys in each family

 // Constraints related to the youngest child
 ages[1] == 1; // Youngest child in Leo's family is a girl
 ages[numChildren] == 1; // Youngest child in Rene's family is a girl

 // Constraints related to the sum of ages
 sum(i in Children) (isGirl[i] * ages[i]) == sum(i in Children) ((1 -
isGirl[i]) * ages[i]); // Sum of ages of girls equals sum of ages of
boys
 sum(i in Children) ages[i] == 60; // Sum of ages of all children is 60
}

execute {
 writeln("Optimal solution:");
 writeln("Ages of children in Leo's family:");
 for (i in Children) {
 if (isGirl[i]) {
 writeln("Girl ", i, ": ", ages[i]);
 }
 }

 writeln("Ages of children in Rene's family:");
 for (i in Children) {
 if (!isGirl[i]) {
 writeln("Boy ", i, ": ", ages[i]);
 }
 }
}

So my second attempt was to ask for some python code relying on
cplex cpoptimizer docplex.

And we get a python model that is a good starting point.

I added

#Break sym

model.add(A[0]<A[1])
model.add(A[1]<A[2])

model.add(B[0]<B[1])
model.add(B[1]<B[2])

model.add(C[0]<C[1])
model.add(C[1]<C[2])

model.add(D[0]<D[1])
model.add(D[1]<D[2])

in order to break symmetries

Then I fixed the all different

Constraint: No twins or children closer in age than a year
model.add(model.all_diff(A[0],A[1],A[2],B[0],B[1],B[2]))
model.add(model.all_diff(C[0],C[1],C[2],D[0],D[1],D[2]))

Not to forget

Constraint: Sum of squares of ages is equal for girls and boys in
each family
model.add(model.sum([A[i] * A[i] for i in range(3)]) ==
model.sum([B[i] * B[i] for i in range(3)]))

model.add(model.sum([C[i] * C[i] for i in range(3)]) ==
model.sum([D[i] * D[i] for i in range(3)]))

which was nearly ok but wrong.

And finally I added

#And then to enumerate all solutions we write

siter = model.start_search(SearchType='DepthFirst', Workers=1,
TimeLimit=100,log_output=None)
Parameters needed to avoid duplicate solutions

nbsol=0
for msol in siter:
 nbsol=nbsol+1
 print("solution ",nbsol)
 print("Ages in Rene's family:", [msol[A[i]] for i in
range(3)],[msol[B[i]] for i in range(3)])
 print("Ages in Leo's family:", [msol[C[i]] for i in
range(3)],[msol[D[i]] for i in range(3)])

which gives

from docplex.cp.model import CpoModel

Create a CPO model
model = CpoModel()

Define variables representing the ages of the children
A = model.integer_var_list(3, 0, 9, name='A')
B = model.integer_var_list(3, 0, 9, name='B')
C = model.integer_var_list(3, 0, 9, name='C')
D = model.integer_var_list(3, 0, 9, name='D')

Constraint: Sum of ages in each family is 60
model.add(model.sum(A + B + C + D) == 60)

Constraint: Sum of squares of ages is equal for girls and boys in
each family
model.add(model.sum([A[i] * A[i] for i in range(3)]) ==
model.sum([B[i] * B[i] for i in range(3)]))

model.add(model.sum([C[i] * C[i] for i in range(3)]) ==
model.sum([D[i] * D[i] for i in range(3)]))

#Break sym

model.add(A[0]<A[1])
model.add(A[1]<A[2])

model.add(B[0]<B[1])
model.add(B[1]<B[2])

model.add(C[0]<C[1])
model.add(C[1]<C[2])

model.add(D[0]<D[1])
model.add(D[1]<D[2])

Constraint: The youngest child in Leo's family is a girl
model.add(C[0] < D[0])

Constraint: In Rene's family, a little girl has just arrived
model.add(A[0] < 1)

Constraint: No twins or children closer in age than a year
model.add(model.all_diff(A[0],A[1],A[2],B[0],B[1],B[2]))
model.add(model.all_diff(C[0],C[1],C[2],D[0],D[1],D[2]))
Constraint: The sum of ages of girls is equal to the sum of ages of
boys in each family
model.add(model.sum(A) == model.sum(B))
model.add(model.sum(C) == model.sum(D))

#And then to enumerate all solutions we write

siter = model.start_search(SearchType='DepthFirst', Workers=1,
TimeLimit=100,log_output=None)
Parameters needed to avoid duplicate solutions

nbsol=0
for msol in siter:
 nbsol=nbsol+1
 print("solution ",nbsol)
 print("Ages in Rene's family:", [msol[A[i]] for i in
range(3)],[msol[B[i]] for i in range(3)])

 print("Ages in Leo's family:", [msol[C[i]] for i in
range(3)],[msol[D[i]] for i in range(3)])

Which I can run within IBM watsonx or any python IDE

In green, what I had to write from scratch and in red what I had to
slightly fix.

And I see

solution 1
Ages in Rene's family: [0, 5, 7] [1, 3, 8]
Ages in Leo's family: [3, 7, 8] [4, 5, 9]

In a nutshell, OPL CPLEX and ChatGPT was a dead end.
OPL CPLEX alone took me 30 minutes.
ChatGPT + python docplex took me one hour.

