Challenge January 2024

Family Riddle

A solution with chatGPT and docplex CPLEX by Alex Fleischer

afleischer@fr.ibm.com

| am relying on free ChatGPT 3.5 and my first attempt was to use
ChatGPT to generate an OPL CPLEX model since in 2022, |
managed to use ChatGPT to generate a nice OPL CPLEX model as
can be read at https://www.linkedin.com/pulse/optimization-zoo-

openai-chatgpt-alex-fleischer/

To solve this problem using OPL, we first need to define the data for the problem, including
the number of students, the cost of renting a 40-seat bus, and the cost of renting a 30-seat
bus. We can then define the variables for the problem, including the number of 40-seat

buses and the number of 30-seat buses.

Next, we need to define the objective function for the problem, which is to minimize the
total cost of renting the buses. We can do this by using a linear objective function and

summing the cost of each bus.

After defining the objective function, we need to define the constraints for the problem. In
this problem, the main constraint is that the total number of seats provided by the buses
must be sufficient to transport all of the students. We can define this constraint by
multiplying the number of buses of each type by the number of seats in each bus, and

ensuring that the total number of seats is greater than or equal to the number of students

Optimization, zoo and OpenAl

chatgpt

Alex Fleischer
2~ Data and Al Technical Sales

December 8, 2022

48 articles

You

Let’s assume that Rene and Leo are both heads of household, and, what a coincidence,
both families include three girls and three boys. The youngest child in Leo’s family is a
girl, and in Rene’s family, a little girl has just arrived. In other words, there is a girl in
Rene’s family whose age is less than one year. Neither family includes any twins, nor
any children closer in age than a year. All the children are under age ten. In each family,
the sum of the ages of the girls is equal to the sum of the ages of the boys; in fact, the
sum of the squares of the ages of the girls is equal to the sum of the squares of the
ages of the boys. The sum of the ages of all these children is 60.

Question: What are the ages of the children in these two families? Write an OPL CPLEX
model for that

But the generated OPL CPLEX model is not good enough so that |
could improve it. (Garbage)

int numChildren = 6;
range Children = 1..numChildren;
int ages[Children] =[1, 2, 3, 4, 5, 6];

dvar boolean isGirl[Children];
minimize sum(i in Children) (agesJi] * ages]i]);

subject to {
/I Constraints related to the number of girls and boys in each
family
count(isGirl, 1) == 3; // Three girls in each family
count(isGirl, 0) == 3; // Three boys in each family

/[Constraints related to the youngest child
ages[1] == 1; // Youngest child in Leo's family is a girl
ages[numChildren] == 1; // Youngest child in Rene's family is a girl

/l Constraints related to the sum of ages

sum(i in Children) (isGirl[i] * ages]i]) == sum(i in Children) ((1 -
isGirl[i]) * ages]i]); // Sum of ages of girls equals sum of ages of
boys

sum(i in Children) ages]i] == 60; // Sum of ages of all children is 60

}

execute {

writeIn("Optimal solution:");
writeln("Ages of children in Leo's family:");
for (i in Children) {

if (isGirl[i]) {

writeIn("Girl ", i, ": ", ages]i]);

}

}

writeln("Ages of children in Rene's family:");
for (i in Children) {
if (NisGirl[i]) {
writeIn("Boy ", i, ": ", ages]i]);
}
}
}

So my second attempt was to ask for some python code relying on
cplex cpoptimizer docplex.

e You

Let’s assume that Rene and Leo are both heads of household, and, what a coincidence,
both families include three girls and three boys. The youngest child in Leo’s family is a
girl, and in Rene’s family, a little girl has just arrived. In other words, there is a girl in
Rene’s family whose age is less than one year. Neither family includes any twins, nor
any children closer in age than a year. All the children are under age ten. In each family,
the sum of the ages of the girls is equal to the sum of the ages of the boys; in fact, the
sum of the squares of the ages of the girls is equal to the sum of the squares of the
ages of the boys. The sum of the ages of all these children is 60.

CAn you write this in docplex cpoptimizer ?

ChatGPT
Certainly! You can use IBM ILOG CPLEX Optimization Studio with the CP Optimizer

module to model and solve this problem. Below is an example of how you can write this

in Docplex CP Optimizer using Python:

python D Copy code

And we get a python model that is a good starting point.
| added
#Break sym

model.add(A[0]<A[1])
model.add(A[1]<A[2])

model.add(B[0]<BI[1])
model.add(B[1]<B[2])

model.add(C[0]<C[1])
model.add(C[1]<C[2])

model.add(D[0]<D[1])
model.add(D[1]<D[2])

in order to break symmetries

Then | fixed the all different

Constraint: No twins or children closer in age than a year
model.add(model.all_diff(A[0],A[1],A[2],B[0],B[1],B[2]))
model.add(model.all_diff(C[0],C[1],C[2],D[0],D[1],D[2]))

Not to forget

Constraint: Sum of squares of ages is equal for girls and boys in
each family

model.add(model.sum([A[i] * A[i] for i in range(3)]) ==
model.sum([B[i] * B[i] for i in range(3)]))

model.add(model.sum([C[i] * C[i] for i in range(3)]) ==
model.sum([D[i] * D[i] for i in range(3)]))

which was nearly ok but wrong.

And finally | added

#And then to enumerate all solutions we write

siter = model.start_search(SearchType='DepthFirst', Workers=1,
TimeLimit=100,log_output=None)
Parameters needed to avoid duplicate solutions

nbsol=0
for msol in siter:

nbsol=nbsol+1

print("solution ",nbsol)

print("Ages in Rene's family:", [msol[A[i]] for i in
range(3)],[msol[Bl[i]] for i in range(3)])

print("Ages in Leo's family:", [msol[C]i]] for i in
range(3)],[msol[D[i]] for i in range(3)])

which gives
from docplex.cp.model import CpoModel

Create a CPO model
model = CpoModel()

Define variables representing the ages of the children
A = model.integer_var_list(3, 0, 9, name="A)
B = model.integer_var_list(3, 0, 9, name='B')
C = model.integer_var_list(3, 0, 9, name='C")
D = model.integer_var_list(3, 0, 9, name='D")

Constraint: Sum of ages in each family is 60
model.add(model.sum(A + B + C + D) == 60)

Constraint: Sum of squares of ages is equal for girls and boys in
each family

model.add(model.sum([A[i] * AJi] for i in range(3)]) ==
model.sum([B[i] * B[i] for i in range(3)]))

model.add(model.sum([C[i] * C[i] for i in range(3)]) ==
model.sum([DIi] * DIi] for i in range(3)]))

#Break sym

model.add(A[0]<A[1])
model.add(A[1]<A[2])

model.add(B[0]<BI[1])
model.add(B[1]<B[2])

model.add(C[0]<C[1])
model.add(C[1]<C][2])

model.add(D[0]<D[1])
model.add(D[1]<DI[2])

Constraint: The youngest child in Leo's family is a girl
model.add(C[0] < D[0])

Constraint: In Rene's family, a little girl has just arrived
model.add(A[0] < 1)

Constraint: No twins or children closer in age than a year
model.add(model.all_diff(A[0],A[1],A[2],B[0],B[1],B[2]))
model.add(model.all_diff(C[0],C[1],C[2],D[0],D[1],D[2]))

Constraint: The sum of ages of girls is equal to the sum of ages of
boys in each family

model.add(model.sum(A) == model.sum(B))
model.add(model.sum(C) == model.sum(D))

#And then to enumerate all solutions we write

siter = model.start_search(SearchType='DepthFirst', Workers=1,
TimeLimit=100,log_output=None)
Parameters needed to avoid duplicate solutions

nbsol=0
for msol in siter:

nbsol=nbsol+1

print("solution ",nbsol)

print("Ages in Rene's family:", [msol[A[i]] for i in
range(3)],[msol[Bl[i]] for i in range(3)])

print("Ages in Leo's family:", [msol[C]i]] for i in
range(3)],[msol[D[i]] for i in range(3)])

Which | can run within IBM watsonx or any python IDE

In green, what | had to write from scratch and in red what | had to
slii htli fix.

File Edit View Insert Cell Kernel Help

E @ D¥— E @ @ P Exécuter @ C) PP Format Code v

model.add(A[@] < 1)

Constraint: No twins or children closer in age than a year

model.add(model.all diff(a[e],A[1],A[2],B[@],B[1],B[2]))
model.add(model.all_diff(c[e],c[1],c[2],D[@],D[1],D[2]))

Constraint: The sum of ages of girls is equal to the sum of ages of boys in each family
model.add(model.sum(A) == model.sum(B))

model.add(model.sum(C) == model.sum(D))

#And then to enumerate all solutions we write

siter = model.start_search(SearchType='DepthFirst', Workers=1, TimelLimit=180,log_output=None)
Parameters needed to avoid duplicate solutions

And | see

solution 1
Ages in Rene's family: [0, 5, 71 [1, 3, 8]
Ages in Leo's family: [3, 7, 8] [4, 5, 9]

In a nutshell, OPL CPLEX and ChatGPT was a dead end.
OPL CPLEX alone took me 30 minutes.
ChatGPT + python docplex took me one hour.

