

Challenge March 2023
Permit Eligibility

A solution with DT5GL by Jack Jansonius – 2 May 2023

Problem Statement (from the web site):

As part of a regulatory process, a government agency wants to determine if an
applicant is eligible for a resident permit using a simple rule: an applicant is eligible
for a resident permit if the applicant has lived at an address while married and in that
time period, they have shared the same address at least 7 of the last 10 years. This
problem was proposed by Trisotech.

Here is an example of input data:

A list of periods living at an address for applicant (From, To, Address):
2010-01-01,2015-12-31,”123 Main St, Anytown, USA”
2016-01-01,2020-12-31,”456 Oak St, Anytown, USA”
2021-01-01,2023-03-04,”789 Elm St, Anytown, USA”

A list of periods living at an address for spouse (From, To, Address):
2010-01-01,2015-12-31,”123 Main St, Anytown, USA”
2016-01-01,2020-12-31,”120 Maple St, Anytown, USA”
2021-01-01,2023-03-04,”789 Elm St, Anytown, USA”

A list of applicant and spouse marriage periods (From, To):
2010-01-01,2015-12-31
2021-01-01,2023-03-04

https://www.trisotech.com/two-dmn-solutions-to-the-same-problem/

Tables in the database:

 - person - - address -

 - person-address - - married -

Implementation of the decision tables in DT5GL:

SQLite_database: "Database/Applicant.sqlite"

An applicant is eligible for a resident permit if the applicant has lived at an

address while married and in that time period, they have shared the same address

at least 7 of the last 10 years. But here it's not years or days but months that

are counted: 7 of the last 10 years = 84 of the last 120 months

YearMonthEndCheck = 202303,

so reference months are from March 2013 to February 2023 (= exactly 10 years).

Reference day = the 15th of the month.

Extra: a listing of the months in which the condition is met, for example:

Periods married and same address: [03/2013-12/2015], [01/2021-02/2023]

Attribute: YearMonthEndCheck Type: Integer

Equals: 202303

Attribute: NumberYearsInspected Type: Integer

Equals: 10

Table 0:

If: | 0| 1|

'Next applicant present' | Y| N|

Then:

NextApplicant is Selected | X| |

NextApplicant is NotSelected | | X|

.......

Repeat until: NotSelected

Proposition: 'Next applicant present'

Obtain_instance_from_database_view: applicant

Table 1:

If: | 0| 1| 2|

Next year in [firstYear-lastYear] | Y| N| N|

month_ok >= 84 | -| Y| N|

Then:

EvalYear is Selected | X| | |

EvalYear is Finished_ok | | X| |

EvalYear is Finished_nok | | | X|

.......

Repeat until: Finished_ok, Finished_nok

Table 2:

If: | 0| 1| 2| 3|

Next month in [firstMonth-lastMonth] | Y| Y| Y| N|

'Applicant is married on reference date' | Y| Y| N| -|1

applicant_address.id = spouse_address.id | Y| N| -| -|

Then:

EvalMonth is Eligible | X| | | |

EvalMonth is NotEligible_1 | | X| | |

EvalMonth is NotEligible_2 | | | X| |

EvalMonth is Finished | | | | X|

.......

Repeat until: Finished

Proposition: 'Applicant is married on reference date'

Obtain_instance_from_database_view: married

1 One reference date per month, namely the 15th, is somewhat rough, since the applicant must meet the condition

for at least 14 days of a month for the month to count toward the final score of 84 months. With an additional

condition in this decision table, it is easy to insert a second reference date per month so that, for example, the 5th

and 25th of the month are polled.

Determine range of years: [firstYear-lastYear]

Attribute: lastYear Type: Integer

Equals: int(YearMonthEndCheck/100)

Attribute: firstYear Type: Integer

Equals: lastYear - NumberYearsInspected

Determine range of months within selected year: [firstMonth-lastMonth]

Attribute: checkMonth Type: Integer

Equals: YearMonthEndCheck % 100

Attribute: firstMonth Type: Integer2

Equals: checkMonth if year == firstYear else 1

Attribute: lastMonth Type: Integer

Equals: checkMonth - 1 if year == lastYear else 12

Attribute: refdate Type: Text

Equals: str(year) + "-" + zerofill(month,2) + "-15"

Attribute: applicant_address.id Type: Integer

Attribute: spouse_address.id Type: Integer

Attribute: current_month_ok_string Type: Text

Equals: zerofill(month,2) + "/" + str(year)

zerofill(4,2) = "04"

rTable 3: specify ok_periodinfo\1

If: | 0| 1|

year = lastYear | Y| Y|

month = lastMonth | Y| Y|

nr_current_month_ok = 0 | Y| N|

Then:

ok_periodinfo = ", [" + current_month_ok_string + "]" | X| |

ok_periodinfo = "-" + current_month_ok_string + "]" | | X|

.......

Table 4: specify ok_periodinfo\2

If: | 0| 1| 2|

nr_current_month_ok = 0 | Y| Y| N|

period_textstring = "" | Y| N| -|

Then:

ok_periodinfo = "[" + current_month_ok_string | X| | |

ok_periodinfo = ", [" + current_month_ok_string | | X| |

ok_periodinfo = "" | | | X|

.......

Table 5: specify nok_periodinfo

If: | 0| 1| 2|

nr_current_month_ok = 0 | Y| N| N|

nr_current_month_ok = 1 | -| Y| N|

Then:

nok_periodinfo = "" | X| | |

nok_periodinfo = "]" | | X| |

nok_periodinfo = "-" + last_month_ok_string + "]" | | | X|

.......

2 With this definition of firstMonth and lastMonth, the months to be checked for the past 10 years range from

March 2013 to February 2023 if the variable YearMonthEndCheck is set to 202303. That check period can be

moved up a month with firstMonth = checkMonth+1 if year == firstYear else 1 and lastMonth = checkMonth if

year == lastYear else 12.

########################### Database views ###########################

Database_view: applicant

With_attributes: id, name

Query:

 SELECT id, name

 FROM person

 WHERE type = "A"

 LIMIT 1 OFFSET %s

With_arguments: applicant.auto_index

Database_view: married

With_attributes: applicant_id, spouse_id, from, to

Query:

SELECT applicant_id, spouse_id, date_from, date_to

 FROM married

 WHERE applicant_id = %s

 AND date_from <= '%s'

 AND (date_to IS NULL OR date_to >= '%s')3

With_arguments: applicant.id, refdate, refdate

Database_view: applicant_address4

With_attributes: id

Query:

 SELECT

 COALESCE((SELECT addressid

 FROM person_address

 WHERE personid = %s

 AND date_from <= '%s'

 AND (date_to IS NULL OR date_to >= '%s')),

 -1) AS addressid

With_arguments: applicant.id, refdate, refdate

Retrieves the addressid for the applicant on the reference day

and returns -1 if no address is found.

Database_view: spouse_address

With_attributes: id

Query:

 SELECT

 COALESCE((SELECT addressid

 FROM person_address

 WHERE personid = %s

 AND date_from <= '%s'

 AND (date_to IS NULL OR date_to >= '%s')),

 -2) AS addressid

With_arguments: married.spouse_id, refdate, refdate

Retrieves the addressid for the spouse on the reference day

and returns -2 if no address is found.

3 Of course, the end date of a marriage period or residential address does not necessarily have to be filled!
4 SQL query as suggested by ChatGPT. Coalesce(x,y) = y if x==’Null’ else x.

########################### GoalAttributes ###########################

GoalAttribute: NextApplicant

Repeat_until: NotSelected

Case: NotSelected

Print: "End!"

Case: Selected

Print: "#REM# - "

>>: month_ok = 0 # Counter months ok, because married and living at

 # the same address.

>>: nok_married = 0 # Counter months not ok because not married.

>>: nok_address = 0 # Counter months not ok because married but not

 # living at the same address.

>>: nr_current_month_ok = 0 # Counter months ok within a subperiod of

 # consecutive ok months.

>>: period_textstring = "" # The text string in which the periods are

 # collected.

>>: last_month_ok_string = "" # Remember last ok month in format "mm/yyyy";

 # empty now for next applicant.

GoalAttribute: EvalYear

Repeat_until: Finished_ok, Finished_nok

Case: Finished_ok

Print: "Applicant %s (%s) is ELIGIBLE for a resident permit." applicant.name

applicant.id

Print: "Number of months married and same address.....: %s " month_ok

Print: " (=> sufficient for minimum of 84 months)"

Print: "Number of months married; not the same address: %s" nok_address

Print: "Number of months not married..................: %s" nok_married

Print: "Periods married and same address: %s" period_textstring

Print: "--"

Case: Finished_nok

Print: "Applicant %s (%s) is NOT eligible for a resident permit." applicant.name

applicant.id

Print: "Number of months married and same address.....: %s " month_ok

Print: " (=> not sufficient for minimum of 84 months)"

Print: "Number of months married; not the same address: %s" nok_address

Print: "Number of months not married..................: %s" nok_married

Print: "Periods married and same address: %s" period_textstring

Print: "--"

Case: Selected

Print: "#REM# - "

GoalAttribute: EvalMonth

Repeat_until: Finished

Case: Finished

Print: "#REM# - "

Case: Eligible

>>: month_ok = month_ok + 1

>>: period_textstring = period_textstring + ok_periodinfo

>>: nr_current_month_ok = nr_current_month_ok + 1

>>: last_month_ok_string = current_month_ok_string

Case: NotEligible_1

>>: nok_address = nok_address + 1

>>: period_textstring = period_textstring + nok_periodinfo

>>: nr_current_month_ok = 0

Case: NotEligible_2

>>: nok_married = nok_married + 1

>>: period_textstring = period_textstring + nok_periodinfo

>>: nr_current_month_ok = 0

Testrun solution without Extra:

Applicant Applicant1 (1) is NOT eligible for a resident permit.

Number of months married and same address.....: 60

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 0

Number of months not married..................: 60

Applicant Applicant2 (3) is NOT eligible for a resident permit.

Number of months married and same address.....: 36

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 12

Number of months not married..................: 72

Applicant Applicant3 (5) is NOT eligible for a resident permit.

Number of months married and same address.....: 55

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 65

Number of months not married..................: 0

Applicant Applicant4 (7) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 93

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 3

Number of months not married..................: 24

Applicant Applicant5 (9) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 84

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 22

Number of months not married..................: 14

End!

Time elapsed: 0:00:02.825050

Testrun solution with Extra:

Applicant Applicant1 (1) is NOT eligible for a resident permit.

Number of months married and same address.....: 60

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 0

Number of months not married..................: 60

Periods married and same address: [03/2013-12/2015], [01/2021-02/2023]

Applicant Applicant2 (3) is NOT eligible for a resident permit.

Number of months married and same address.....: 36

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 12

Number of months not married..................: 72

Periods married and same address: [03/2013-05/2015], [06/2022-02/2023]

Applicant Applicant3 (5) is NOT eligible for a resident permit.

Number of months married and same address.....: 55

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 65

Number of months not married..................: 0

Periods married and same address: [03/2013-12/2015], [01/2021-08/2022], [02/2023]

Applicant Applicant4 (7) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 93

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 3

Number of months not married..................: 24

Periods married and same address: [03/2013-12/2015], [01/2018-11/2022]

Applicant Applicant5 (9) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 84

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 22

Number of months not married..................: 14

Periods married and same address: [01/2015], [02/2016-12/2022]

End!

Time elapsed: 0:00:02.074774

Details test cases

Testcase 1 (website):

person: address:

person-address: married:

Result:
Applicant Applicant1 (1) is NOT eligible for a resident permit.

Number of months married and same address.....: 60

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 0

Number of months not married..................: 60

Periods married and same address: [03/2013-12/2015], [01/2021-02/2023]

Testcase 2:

person:

person-address: married:

Result:
Applicant Applicant2 (3) is NOT eligible for a resident permit.

Number of months married and same address.....: 36

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 12

Number of months not married..................: 72

Periods married and same address: [03/2013-05/2015], [06/2022-02/2023]

Testcase 3:

person: address:

person-address: married:

Result:
Applicant Applicant3 (5) is NOT eligible for a resident permit.

Number of months married and same address.....: 55

 (=> not sufficient for minimum of 84 months)

Number of months married; not the same address: 65

Number of months not married..................: 0

Periods married and same address: [03/2013-12/2015], [01/2021-08/2022], [02/2023]

Testcase 4:

person:

person-address: married:

Result:
Applicant Applicant4 (7) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 93

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 3

Number of months not married..................: 24

Periods married and same address: [03/2013-12/2015], [01/2018-11/2022]

Testcase 5:

person: address:

person-address: married:

Result:
Applicant Applicant5 (9) is ELIGIBLE for a resident permit.

Number of months married and same address.....: 84

 (=> sufficient for minimum of 84 months)

Number of months married; not the same address: 22

Number of months not married..................: 14

Periods married and same address: [01/2015], [02/2016-12/2022]

What's new in DT5GL?

In a first design of a solution to this challenge, I used variables in a temporary table of

the database being used. This construction looked like this:

Initial_database_table: init_results

Query:

 CREATE TEMP TABLE results AS

 SELECT 0 AS month_ok,

 0 AS nok_married,

 0 AS nok_address

End_Query

Database_view: results

With_attributes: month_ok, nok_married, nok_address

Query:

SELECT *

 FROM results

End_Query

Thus, they are the variables that track how many months meet the condition "married

and living at the same address," namely month_ok and how many months do not meet

it, due to "not married" (nok_married) and months that do not meet it, due to "married
and not living at the same address (nok_address).

The goal attribute eval_month then increments the variables in question with simple sql

statements:

Case: Eligible

>SQL: "UPDATE results "

<SQL: " SET month_ok = month_ok + 1 "

Case: NotEligible_1

>SQL: "UPDATE results "

<SQL: " SET nok_address = nok_address + 1 "

Case: NotEligible_2

>SQL: "UPDATE results "

<SQL: " SET nok_married = nok_married + 1 "

Through the database view ‘results’ mentioned above, the variables are always

retrievable, for example as a condition in decision table 1: results.month_ok >= 84.

Until recently, this approach worked fine, but now that DT5GL is being integrated into the
Dutch Datawarehouse tool Grip op Data (https://www.gripopdata.nl/) and is being used

to label and enrich tens of millions of records for millions of customers at a government

organization, performance is an issue, so I was asked to replace these external variables
- for once - with internal variables.

Although parallel processing of this one-time labeling process5 remains necessary to keep

the entire throughput time under control, the 25% performance gain achieved was well
worth it!

The combination of decision tables and SQL realized with DT5GL appears to work very

well for organizations that get stuck in complexity when working with SQL alone, or

supplement SQL with all kinds of 3GL constructs.6

5 Stated process is performed with PostgreSQL and Oracle.
6 Conform: https://dmcommunity.org/2021/09/02/is-sql-for-business-or-it/

https://www.gripopdata.nl/)
https://dmcommunity.org/2021/09/02/is-sql-for-business-or-it/

Replacing external variables in the database with internal variables does look very

simple:

Case: Eligible

>>: month_ok = month_ok + 1

Case: NotEligible_1

>>: nok_address = nok_address + 1

Case: NotEligible_2

>>: nok_married = nok_married + 1

And the condition in decision table 1 is now even simpler: month_ok >= 84

	Challenge March 2023

