
Here is a Scala implementation of the challenge.

import java.time.LocalDate
import java.time.temporal.ChronoUnit
import scala.math.Ordering.Implicits.infixOrderingOps

case class Period(from: LocalDate, to: LocalDate) {
 def intersectWith(period: Period): Option[Period] = {
 if (from > period.to) None
 else if (to < period.from) None
 else {
 val f = if (from < period.from) period.from else from
 val t = if (to > period.to) period.to else to
 Some(Period(f, t))
 }
 }

 lazy val days = ChronoUnit.DAYS.between(from, to)
}

object Period {
 def of(from: String, to: String): Period = {
 Period(LocalDate.parse(from), LocalDate.parse(to))
 }
}

case class Residence(from: String, to: String, address: String) {
 val period = Period.of(from, to)
}

case class Application(applicantResidences: List[Residence],
 spouseResidences: List[Residence],
 marriedPeriods: List[Period])

case class Outcome(eligible: Boolean, eligibleDays: Long, marriedLivedTogether: List[Period], yearsRequired:Int,
since:LocalDate)

https://dmcommunity.org/challenge/challenge-march-2023/

class Decision(yearsRequired: Int, withinLastYears: Int) {

 val cutoffPeriod = {
 val today = LocalDate.now()
 Period(today.minusYears(withinLastYears), today)
 }

 def eligibility(app: Application): Outcome = {
 val marriedLivedTogether = livedTogetherWhileMarried(app)
 val days = marriedLivedTogether.map(period => period.days).sum;
 val eligible = yearsRequired * 365 < days
 Outcome(eligible, days, marriedLivedTogether, yearsRequired, cutoffPeriod.from)
 }

 private def livedTogetherWhileMarried(app: Application): List[Period] = {
 for (appRes <- app.applicantResidences;
 spouseRes <- app.spouseResidences;
 married <- app.marriedPeriods;
 livedTogether <- appRes.period.intersectWith(spouseRes.period) if appRes.address == spouseRes.address;
 livedTogetherWhileMarried <- livedTogether.intersectWith(married);
 eligiblePeriod <- livedTogetherWhileMarried.intersectWith(cutoffPeriod)
)
 yield eligiblePeriod
 }
}

object Test extends App {
 val applicantResidences = List(
 Residence("2010-01-01", "2015-12-31", "123 Main St, Anytown, USA"),
 Residence("2016-01-01", "2020-12-31", "456 Oak St, Anytown, USA"),
 Residence("2021-01-01", "2023-03-04", "789 Elm St, Anytown, USA")
)

 val spouseResidences = List(
 Residence("2010-01-01", "2015-12-31", "123 Main St, Anytown, USA"),
 Residence("2016-01-01", "2020-12-31", "120 Maple St, Anytown, USA"),
 Residence("2021-01-01", "2023-03-04", "789 Elm St, Anytown, USA"),
)

 val married = List(
 Period.of("2010-01-01", "2015-12-31"),
 Period.of("2021-01-01", "2023-03-04")
)

 val application = Application(applicantResidences, spouseResidences, married)

 val outcome = new Decision(yearsRequired=7, withinLastYears=10).eligibility(application)

 val time = s"${outcome.eligibleDays / 365} years ${outcome.eligibleDays % 365} days"
 val result = if (outcome.eligible) "" else "not"

 println("Applicant is " + result + " eligible for the permit")
 println("Total time lived together since " + outcome.since + " is " + time)
 println("Eligible periods are " + outcome.marriedLivedTogether)
}

The code can be tested with online Scala REPL. Copy/paste the code into https://scastie.scala-lang.org/
Here are the results:

Applicant is not eligible for the permit

Total time lived together since 2013-04-06 is 4 years 331 days

Eligible periods are List(Period(2013-04-06,2015-12-31), Period(2021-01-01,2023-03-04))

https://scastie.scala-lang.org/

