DMCommunity.org
Challenge Mar-2023 “Permit Eligibility”

Analysis of Solution Generated by ChatGPT-4 on April 2, 2023

ChatCPT has already produced a nice-looking solution even with a pseudo-code. However, anybody who looks at it will see that it was obviously
incorrect. In particular, it does not accumulate intersecting periods, does not respect 10-years limit, and makes more errors. Instead of criticizing
the current ChatGPT capabilities, | thought | should try to help ChatGPT to produce a more reasonable solution. Below | described the results of
my efforts split into 3 parts:

- Part 1. My Dialog with ChatGPT
- Part 2. Validation of the ChatGPT Solution
- PART 3. Manual Conversion of ChatGPT Solution to Working Java Code

PART 1. My dialog with ChatGPT

Request:

Build 2 decision model for this problem. As part of a regulatory process, 2 government
agency wants to determine if an applicant is eligible for a resident permit using a simple
rule: 2n applicant is eligible for a resident permit if the applicant has lived at an address
while married and in that time period, they have shared the same address at lzast 7 of the
last 10 years. Here is an example of input data:

=
=
—_
[]

f periods living at an address for applicant (From, To, Address):
1-01,2015-12-31,"123 Main 5t, Anytown, USA”
-01,2020-12-31,"456 Qak St, Anytown, USA”
-01,2023-03-04,"789 Elm St, Anytown, USA"

010-
01

on
[e Y e

[S T

[
rd

A list of periods living at an address for spouse (From, To, Address):

=
=
wu
[=]
4]
1]
=]
=3
=
1]
=1
=
£
=
[=1
L
=
[=]
=
i
Lie]
=
=
{5}
=
=
=]
]
h=]
]
=
=1
v
il
.
=1
3
1
(=]

https://dmcommunity.files.wordpress.com/2023/03/challenge2023mar.chatgpt4.pdf

Response:

©

To build a dedsion madel for this problem, we can follow the steps given below:

Step 1: Extract the relevant data from the given input, i.e., periods of the applicant and the

spouse living at different addresses, and periods of their marriage.

Step 2: For each period in which the applicant lived at an address while being married, check
if the spouse also lived at the same address during that period. If yes, mark it as a shared

address period.
Step 3: Calculate the total number of shared address periods for the applicant.

Step 4: Check if the total number of shared address periods for the applicant is at least 7 out

of the last 10 years. If yes, the applicant is eligible for a resident permit.,
Step 5: Output the decision, i.e., whether the applicant is eligible or not.

Here is the pseudo code for the decision model:

shared_periods =
for pericd in applicant _periods:
if period im marriage_periods:
spouse_period = find od_in_spouse_pe s(period)

if spouse_period is not Mone:

shared_period = calculate_ red_period{period, spouse_period)

shared_periods.append({shared_period)
total shared_periods = sum{shared_periods)
if total_shared_periocds »=

output(

autput(

In the above pseudo code, “applicant_periods™ refers to the list of periods the applicant
lived at different addresses, *marriage_periods™ refers to the list of periods of the applicant's
marriage, ~ spouse_periods” refers to the list of periods the spouse lived at different
addresses, * find_period_in_spouse_periods()” function takes a2 period and returns the
corresponding period in the * spouse_periods™ list, *calculate_shared_period()” function
takes two periods and returns the period of shared residence between them,
*shared_periods™ refers to the list of periods of shared residence between the applicant and
the spouse, “total_shared_periods® is the total number of shared residence perniods

between the applicant and the spouse

Request:

Did you forget the last 10 years’ requirement?

Response:

You are right. | apologize for the oversight. To ensure that the eligibility criteria of living at
the same address for at least 7 of the last 10 years is met, we need to modify the decision

model. We can modify the pseudo code as follows

current_date = today's date
eligible periods =
for pericd in applicant_periocds:
if period im marriage_periods:
spouse_period = fi
if spouse_period is not Wone:
shared_period = calculate shared_periocd{period, spouse_period)
if shared_pericd[1] »= current_date - timedelta(days= }:

eligible periods.append{shared_period)

total elipible years = sum([calculate re{perlod) for perlod in eligible periods

if total_eligible years »=

output(
[

output(

In the above pseudo code, we have introcuced a new variable * current_date™, which is the
current date. We then check if the end date of the shared period is within the last 10 years
from the * current_date™. If yes, we add that shared period to the “eligible_periods™ list.

We then calculate the total number of years in the “eligible_perieds” list and check if it is

greater than or equal to 7. If yes, the applicant is eligible for a resident permit.

The " timedelta(days=3658)" represents a time delta of 10 years in days. The
“calculate_years()" function is used to calculate the number of years in a period, and
“eligible_periods™ refers to the list of eligible shared peniods between the applicant and

ne spouse
Request:
Can you show this solution in Java?

Response:
Sure, here is an example implementation of the decision model in Java:

) Copycode

java.time.LocalDate;
java.util.ArraylList;

java.util.

(5tring[] args) {

List<Period> applicantPeriods = <>();
applicantPeriods.add((LocalDate.of(» 1, 1), LocalDate.of(
applicantPeriods.add((LocalDate.of(» 1). LocalDate.of(

applicantPeriods.add((LocalDate.of(» 1), Localpate.of(

List<Period> spousePeriods = <>();

spousePeriods . add((LocalDate.of (N), LocalDate.of(
spousePeriods . add((LocalDate.of(N), LocalDate.of(
spousePeriods . add((LocalDate.of(s), LocalDate.of(

List<Period> marriagePeriods = <();
marriagePeriods.add((Localbate.of(» 1, 1), LocalDate.of(
marriagePeriods.add((LocalDate.of(» 1, 1), LocalDate.of(

Request:

The code is not complete. Please show the complete solution in Java.

Response:

| apologize for that. Here's the complete solution in Java:

| copied the complete produced code:

import java.time.LocalDate;

import java.time.temporal.ChronoUnit;
import java.util.ArrayList;

import java.util.List;

public class ResidentPermitEligibility {

public static void main(String[] args) {
// Input data
List<Period> applicantPeriods = new ArrayList<>();
applicantPeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31), "123 Main St, Anytown, USA"));
applicantPeriods.add(new Period(LocalDate.of(2016, 1, 1), LocalDate.of(2020, 12, 31), "456 Oak St, Anytown, USA"));
applicantPeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4), "789 EIm St, Anytown, USA"));

List<Period> spousePeriods = new ArrayList<>();

spousePeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31), "123 Main St, Anytown, USA"));
spousePeriods.add(new Period(LocalDate.of(2016, 1, 1), LocalDate.of(2020, 12, 31), "120 Maple St, Anytown, USA"));
spousePeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4), "789 EIm St, Anytown, USA"));

List<Period> marriagePeriods = new ArrayList<>();
marriagePeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31)));
marriagePeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4)));

// Decision model
LocalDate currentDate = LocalDate.now();

List<Period> eligiblePeriods = new ArrayList<>();
for (Period period : applicantPeriods) {
if (marriagePeriods.contains(period)) {
Period spousePeriod = findPeriodInSpousePeriods(period, spousePeriods);
if (spousePeriod != null) {
Period sharedPeriod = calculateSharedPeriod(period, spousePeriod);
if (sharedPeriod.getTo().isAfter(currentDate.minusYears(10))) {
eligiblePeriods.add(sharedPeriod);
}
}
}
}
int totalEligibleYears = 0;
for (Period period : eligiblePeriods) {
totalEligibleYears += calculateYears(period);
}
if (totalEligibleYears >=7) {
System.out.printin("Eligible for resident permit");
}else {
System.out.printIn("Not eligible for resident permit");
}
}

public static Period findPeriodInSpousePeriods(Period period, List<Period> spousePeriods) {
for (Period spousePeriod : spousePeriods) {
if (spousePeriod.equals(period)) {
return spousePeriod;
}
}
return null;

}

public static Period calculateSharedPeriod(Period period1, Period period2) {
LocalDate from = periodl.getFrom().isAfter(period2.getFrom()) ? periodl.getFrom() : period2.getFrom();
LocalDate to = periodl.getTo().isBefore(period2.getTo()) ? periodl.getTo() : period

The code was abrupt.

(O execute y

Could you tr

lel, | don't have a local environment to execute the code. However, |

'

As an Al language moc

can show you an example of how to use the “isEligibleForResidentPermit’ method with

,_,
o
o)

o
S
(o]
<
o
m
(o}

nput data:

Ej Copy code

public static wvoid main(String[] args) {

List¢<AddressPeriod> applicantPeriods = new Arraylist

applicantPeriods (new Peri LocalDate.of(), LocalDate

applicantPeriods (new | iod(LocalDate.of(); LocalDate.
(

applicantPeriods (new / (LocalDate), LocalDate.

List<AddressPeriod> spousePeriods = new Arraylist<>();
spousePeriods (new iod(LocalDate [), LocalDate.of(
spousePeriods (new (LocalDate.c), LocalDate.of(

spousePeriods (new ; (LocalDate.of(), LocalDate.of(

List¢MarriagePeriod> marriagePeriods = new Arraylist<>();

marriagePeriods (new M (LocalDate), LocalDate.

marriagePeriods (new Marriagef (LocalDate (); LocalDate

boolean istEligible = isEligibleForResidentPermit(applicantPeriods, spousePeriod

System (

Assuming the implementation of the *isEligibleForResidentPermit™ method is correct, this

code should output: “Is the applicant eligible for a resident permit? true”.

This is an invalid answer, as even a manual evaluation of the Challenge’s lists shows that this applicant is NOT eligible for a resident permit. Really
the eligible periods are:

[2013-03-04; 2015-12-31] 1032 days
[2021-01-01; 2023-03-04] 792 days
Total: 1824 days ~ 4.9 years

Then | asked:

Could you show this decision model in DMN?

Certainly! Here's a DMN decision model that represents the logic for determining if an

applicant is eligible for a resident permit based on the provided input data:

ChatGPT found a link to an old image (probably a previously generated DMN diagram) but that link was broken.

It didn’t make a lot of sense to continue this dialog. Still, instead of giving up, | decided to clean up the produced Java code and run it.

PART 2. Validation of the ChatGPT Solution

| created a simple Java project PermitEligibilityChatGPT in Eclipse and copied the above code into the Java class PermitEligibility. After cleaning up

some obvious syntax errors, | came up with this “good-looking” Java code shown below. So, assuming that the following code was completely
generated by ChatGPT, we will analyze it.

package permit.eligikility;

import -java.time.LocallDate;
import -java.util .ArraylList;
import -java.util.List;

public class PermitEligibility {

private static final int REQUIRED YEARS = 7;
private static final int LOOKBACK YEARS = 10;

public -static boolean isEligible (List<Residence> applicantResidences, List<Residence> spouseResidences,
List<Marriage> marriages) {

LocalDate today = LocalDate.nowl();
LocalDate lockbackDate = today.minusYears (LOOKBACK YEARS) ;

f -Find -all addresses where applicant -and spouse -lived together during marriage periods
List<String> sharedhddresses = new ArrayList<>();
for (Marriage marriage : marriages) {
LocalDate marriageStart = marriage.getStart():

LocalDate marriageEnd = marriage.getEnd() -'=-mmll-? marriage.getEnd() -: -today;
for - (Residence applicantResidence -: -applicantResidences) {
if- (applicantResidence.contains (marriageStart) && applicantResidence.contains (marriageEnd)) {
for - (Residence spouseResidence -: -spouseResidences) {
if - (spouseResidence.contains (marriageStart) "&& spouscResidence.contalins (marriageEnd)) -{
if (applicantResidence.gethAddress () .equals (spouseResidence.getAddress())) {
sharedbddresses.add (applicantResidence.gethddress ()) ;
break;
¥
}
}

Here we can see that “sharedAddresses” are those for which marriage periods cover residence periods for both the applicant and the spouse.
The periods that are only partially covered will be ignored.

' -Check if shared addresses were lived in for at least 7 of the last 10 years
int eligikleYears =-0;
for (String - address-: -sharediddresses) {
int livedYears = 0;
for - (Residence -applicantReszsidence - @ -applicantBResidences) -{
if - (applicantResidence.getlddress () .equals (address) -&& applicantBesidence.getS5tart () .isaAfter (lookbackDate)) - {
lived¥Years += applicantResidence.getDurationYears ()
}
}
for (Residence spouseResidence @ spouscResidences) {
if - (spouseBesidence.gethAddress () .equals (address) - && -spousceBResidence.getStart () .iskfter (lookkackDate)) - {
livedYears += spousceResidence.getDurationYears();
}
}
System.out.println("livedyears = " +livediears):
if - (livedYears >= REQUIRED YEARS) - {
eligibleYears -+=- livedYears;
}
}
System.ocut.println("eligikleYears = " +4eligikble¥Years);

retorn eligikleYears >= REQUIRED YEARS:

Note that “eligibleYears” can be calculated twice, the first time for the applicant and then for the spouse. That’s certainly wrong.

Here are supporting inner classes generated by ChatGPT:

private -static -class -Residence - {
private ‘LocalDate start;
private LocalDate end;
private -String -address:

public EResidence (LocalDate start, Locallate end, String address) {
this.start = start:
this.end = end;
this.address = address;

public boolean contains (Locallate date) - {
retorn - !'date.isBefore(start) && (end == nmll || 'date.isifter (end)):

public String gethAddress() {
retarn -address;

public int getDuration¥Years() {
if (end == null) {

return LocalDate.now () .get¥Year() - start.get¥ear():
} else {
return end.get¥ear() - start.get¥ear():

public LocalDate getStart() {
retarn-startc;

private static class Marriage {
private ‘LocalDate startc:
private ‘LocalDate end;

public Marriage (LocalDate start, LocalDate end) {
this.start = start;
this.end = end;

public LocalDate getStart() {
retarn start;

public LocalDate getEnd/() {
retarn -end;

And finally here is a test case correctly generated by ChatGPT based on the Challenge’s lists:

public-static -wvoid main (String[] args) - {
; Creating -the -list of periods -living -at -an-address -for -the -applicant
List«<Residence> applicantPeriods = new RArravList<>();
applicantPeriods.add (new Residence (LocalDate.of (2010, 1, 1), LocalDate.of (2015, 12, 31), "123 Main 5t, Anvytown, USA")).
applicantPeriods.add (new Residence (LocalDate.of (2016, 1, 1), LocalDate.of (2020, 12, 31}, "456 Cak 5t, Anvtown, UTUS4A"));
applicantPeriods.add (new Residence (LocalDate.of (2021, 1, 1), LocalDate.of (2023, 3, 4), "78% Elm S5t, Anvytown, USA")):

Creating the -list of ‘periods-living at -an-address for -the spouse
List<Residence> spousePeriods = new ArrayList<>():
spousePeriods. add (new Residence (LocalDate.of (2010, -1, -1), -LocalDate.of (2015, 12, -31), "123 Main 5t, Anytown, TUSA"™)):
spousePeriods. add (new Residence (LocallDate.of (2016, -1, -1}, LocalDate.of (2020, 12, -31), "120 Maple 5t, Anytown, TSA")):
spousePeriods. add (new Residence (LocallDate.of (2021, 1, 1), LocalDate.of (2023, 3, 4), "7E8%9 Elm 5t, &nvtown, USA™));

Creating the list of marriage periocds
List<Marriage> marriagePericods = new ArrayList<>():
marriagePeriods.add (new Marriage (LocalDate.of (2010, -1, -1}, -LocalDate.of (2015, -12, -31))):
marriagePeriods.add (new Marriage (LocalDate.of (2021, -1, 1), LocalDate.of (2023, -3, -4))):

Checking if the applicant is eligikble for a resident permit
boolean isEligible = isEligible(applicantPeriods, spousePeriods, marriagePeriods);
System.out.println("Is the applicant eligikle for a resident permit? " + isEligikle);

Then | added printing for “livedYears” and “eligibleYears” and ran this code “as is”. Here are the produced results:

livedYears = 0

livedYears = 4

eligibleYears = 0

Iz the applicant eligible for a resident permit? false

This result is correct as we did expect ineligibility as well. However, it was produced based on false logic.

Obviously, something is wrong with the above “good-looking” code. A quick analysis of the above code shows several serious issues:
- dealing with years rather than with days inside different periods

- Residence periods do not always have to be inside Marriage periods, they may intersect
- double calculation of estimated years
- ignoring less than 1-year periods.

A partial correction of this code would not be productive, so | decided to essentially redesign it.

PART 3. Manual Conversion of ChatGPT Solution to Working Java Code

Here is the essentially modified code. | created 3 java classes: Period.java, Residence.java, and Problem.java.

Period.java

package permit.eligibility:

import java.time.Duration;
import java.time.LocalDate;

public class Period {
LocalDate start:
LocalDate end:

public Period (LocalDate start, LocalDate end) {
this.start = startc;
this.end =-end;

public-int getDurationDavs() - {
Duration duration = Duration.bsetween(start.atS5tart0fDay (), end.atStartCfDav()):
retorn (int) duration.coDavsa():

public Period getIntersection(Periocd p) {
LocalDate -intersectionStart -= -this.start.isAfter(p.start) -? -this.start : ‘p.start;

LocalDate -intersectionEnd -=-this.end.isBefore(p.end) -? -this.end : -p.end;
if (intersectionStarc.ishfter (intersectionEnd)) {

return null; // no intersection
} else {

return new Period(intersectionStart, intersectionEnd):;

Residence.java

package permit.eligibility;
import java.time.LocalDate;

public class Residence {
Period pericod;
String address;

public Eesidence (LocalDate start, LocalDate end, 5tring address) {
this.period = new Period(start,end);
this.address = address;

public Period getPeriocd() {
retarn period;

public String gethddress() {
return address;

b
Problem.java

package permit.eligibilicy;

import java.time.LocalDate;
import java.util.Arraylisc;
import java.util.Lisct;

public class Problem {

static final int REQUIRED YEARS = 7;

static final int LOOKBACK YEARS = 10;

LocalDate applicationDate = LocalDate.now():

LocalDate lookbackDate = applicationDate.minusYears(LOOKBACK YEARS);
Period consideredPeriod = new Period(lockbackDate, applicationDate):;

public Problem(LocalDate applicationDate, int lookbackYears) {
LocalDate lookbackDate = applicationDate.minusYears(lookbackYears);
consideredPeriod = new Period(lookbackDate, applicationDate);

public boolean isEligible (List<Residence> applicantReszidences,
List<Residence> -spoussResidences,
Lisc<Period> marriagePeriods) {

J# Find-all intersection periods when applicant -and spouse lived-at the same address
Lisc<Period> sharedPeriods = new ArrayLlisc<>();
for (Residence applicantResidence : applicantResidences) {
for - (Residence spouseBesidence - : spouseResidences) - {
if - (applicantResidence.getAddress() .equals (spouscResidence.gethddresa())) {
Period intersection = applicantResidence.getPeriod().gecIntersection (spouseResidence.gecPeriod()):
if (intersection != nmll) {
sharedPeriods.add{intersection);

int eligikbleDays =-0;
for (Period marriagePeriod-: marriagePeriods) {
for - (Period sharedPeriod - : sharedPeriods) {
Period intersection = marriagePericod.getIntersection(sharedPeriod);
if - (intersection == -mmll)
continne;
intersection =-intersection.getIntersection(consideredPeriod);
if - (intersection "= mmll) {
System.out.println("sharedPriod: [" -+ intersection.start -+ ";" +-intersection.end-+-"]1-"
+-intersection.getDurationDays () + " davys");
eligikbleDays += intersection.getDurationDays ()

}
System.ocut.println("eligiklelDays = " + eligibleDays);
return eligikleDays >= HEQUIRED YEARS * 365;

public static wvoid main(String[] args) -{

LocalDate -applicationDate = LocalDate.of (2023, -3, 4):
Problem probklem = new Problem{applicationDate, 10);

TEST 1

Creating -the -list -of ‘periods-1i

Iy ving-at -an -address -for -the -applicant
List<BResidence> applicantPeriocods = new ArrayList<>():

applicantPeriods. add (new Residence (Locallate.of (2010, 1, 1), LocallDate.of (2015, 12, 31), "123 Main 5t, Znvtown, USA™)):
applicantPeriods.add (new Residence (LocalDate.of (2016, -1, 1), LocalDate.of (2020, -12, -31), -"456 Oak -5t, Anytown, TUSA")):
applicantPeriods. add (new Residence (Locallate.of (2021, ‘1, ‘1), LocalDate.of (2023, -3, 4), "789 Elm 5t, Rnytown, TSA™)):

Creating -the -list -of ‘periods -living -at -an -address -for -the -spouse
List<Residence> spousePericods = new ArrayList<>():

spousePeriods. add (new Residence (LocallDate.of (2010, 1, 1), LocallDate.of (2015, 12, 31), "123 Mzin 5t, AEnytown, USA™));
spousePeriods. add (new Residence (LocalDate.of (2016, -1, 1), ‘LocalDate.of (2020, 12, -31), -"120 Maple -5t, Anytown, TSA™)) ;

spousePeriods. add (new -Residence (Locallate.of (2021, 1, ‘1), LocalDate.of (2023, -3, 4}, "789 Elm 5t,

Creating -the -list of marriage -periods
List«<Period> marriagePeriods = new ArrayListc<:():
marriagePeriods.add (new Period(LocalDate.of (2010, ‘1, 1), LocalDate.of (2015, 12, 31))):
marriagePeriods.add (new Period(LocalDate.of (2021, -1, -1}, LocalDate.of (2023, -3, -4})):

Checking if the applicant is eligikle for a resident permit
boolean -isEligibkle -= problem.isEligible (applicantPeriods, -spousePeriods, marriagePeriods);
System.out.println ("TEST ‘1: I=s the applicant eligikle for a resident permitc? " -+ -izEligikle);

This main test is basically the same as in ChatGPT’ code just | parameterized “applicationDate” and “lookbackYears”.
My execution results:

sharedPriod: [2013-03-04;2015-12-31] 1032 days

sharedPriod: [2021-01-01;2023-03-04] 75%2 days

eligibleDays = 1324

TEST 1: Is the applicant eligikle for a resident permit? false

hnytown, USA™)):

