
DMCommunity.org

Challenge Mar-2023 “Permit Eligibility”

Analysis of Solution Generated by ChatGPT-4 on April 2, 2023

ChatCPT has already produced a nice-looking solution even with a pseudo-code. However, anybody who looks at it will see that it was obviously

incorrect. In particular, it does not accumulate intersecting periods, does not respect 10-years limit, and makes more errors. Instead of criticizing

the current ChatGPT capabilities, I thought I should try to help ChatGPT to produce a more reasonable solution. Below I described the results of

my efforts split into 3 parts:

- Part 1. My Dialog with ChatGPT

- Part 2. Validation of the ChatGPT Solution

- PART 3. Manual Conversion of ChatGPT Solution to Working Java Code

PART 1. My dialog with ChatGPT
Request:

https://dmcommunity.files.wordpress.com/2023/03/challenge2023mar.chatgpt4.pdf

Response:

Request:

Did you forget the last 10 years’ requirement?

Response:

Request:

Can you show this solution in Java?

Response:

Request:

The code is not complete. Please show the complete solution in Java.

Response:

I copied the complete produced code:

import java.time.LocalDate;
import java.time.temporal.ChronoUnit;
import java.util.ArrayList;
import java.util.List;

public class ResidentPermitEligibility {

 public static void main(String[] args) {
 // Input data
 List<Period> applicantPeriods = new ArrayList<>();
 applicantPeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31), "123 Main St, Anytown, USA"));
 applicantPeriods.add(new Period(LocalDate.of(2016, 1, 1), LocalDate.of(2020, 12, 31), "456 Oak St, Anytown, USA"));
 applicantPeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4), "789 Elm St, Anytown, USA"));

 List<Period> spousePeriods = new ArrayList<>();
 spousePeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31), "123 Main St, Anytown, USA"));
 spousePeriods.add(new Period(LocalDate.of(2016, 1, 1), LocalDate.of(2020, 12, 31), "120 Maple St, Anytown, USA"));
 spousePeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4), "789 Elm St, Anytown, USA"));

 List<Period> marriagePeriods = new ArrayList<>();
 marriagePeriods.add(new Period(LocalDate.of(2010, 1, 1), LocalDate.of(2015, 12, 31)));
 marriagePeriods.add(new Period(LocalDate.of(2021, 1, 1), LocalDate.of(2023, 3, 4)));

 // Decision model
 LocalDate currentDate = LocalDate.now();

 List<Period> eligiblePeriods = new ArrayList<>();
 for (Period period : applicantPeriods) {
 if (marriagePeriods.contains(period)) {
 Period spousePeriod = findPeriodInSpousePeriods(period, spousePeriods);
 if (spousePeriod != null) {
 Period sharedPeriod = calculateSharedPeriod(period, spousePeriod);
 if (sharedPeriod.getTo().isAfter(currentDate.minusYears(10))) {
 eligiblePeriods.add(sharedPeriod);
 }
 }
 }
 }
 int totalEligibleYears = 0;
 for (Period period : eligiblePeriods) {
 totalEligibleYears += calculateYears(period);
 }
 if (totalEligibleYears >= 7) {
 System.out.println("Eligible for resident permit");
 } else {
 System.out.println("Not eligible for resident permit");
 }
 }

 public static Period findPeriodInSpousePeriods(Period period, List<Period> spousePeriods) {
 for (Period spousePeriod : spousePeriods) {
 if (spousePeriod.equals(period)) {
 return spousePeriod;
 }
 }
 return null;
 }

 public static Period calculateSharedPeriod(Period period1, Period period2) {
 LocalDate from = period1.getFrom().isAfter(period2.getFrom()) ? period1.getFrom() : period2.getFrom();
 LocalDate to = period1.getTo().isBefore(period2.getTo()) ? period1.getTo() : period
….
The code was abrupt.

This is an invalid answer, as even a manual evaluation of the Challenge’s lists shows that this applicant is NOT eligible for a resident permit. Really
the eligible periods are:

[2013-03-04; 2015-12-31] 1032 days
[2021-01-01; 2023-03-04] 792 days
Total: 1824 days ~ 4.9 years

Then I asked:

ChatGPT found a link to an old image (probably a previously generated DMN diagram) but that link was broken.

It didn’t make a lot of sense to continue this dialog. Still, instead of giving up, I decided to clean up the produced Java code and run it.

PART 2. Validation of the ChatGPT Solution

I created a simple Java project PermitEligibilityChatGPT in Eclipse and copied the above code into the Java class PermitEligibility. After cleaning up

some obvious syntax errors, I came up with this “good-looking” Java code shown below. So, assuming that the following code was completely

generated by ChatGPT, we will analyze it.

Here we can see that “sharedAddresses” are those for which marriage periods cover residence periods for both the applicant and the spouse.

The periods that are only partially covered will be ignored.

Note that “eligibleYears” can be calculated twice, the first time for the applicant and then for the spouse. That’s certainly wrong.

Here are supporting inner classes generated by ChatGPT:

And finally here is a test case correctly generated by ChatGPT based on the Challenge’s lists:

Then I added printing for “livedYears” and “eligibleYears” and ran this code “as is”. Here are the produced results:

This result is correct as we did expect ineligibility as well. However, it was produced based on false logic.

Obviously, something is wrong with the above “good-looking” code. A quick analysis of the above code shows several serious issues:
- dealing with years rather than with days inside different periods

- Residence periods do not always have to be inside Marriage periods, they may intersect

- double calculation of estimated years

- ignoring less than 1-year periods.

A partial correction of this code would not be productive, so I decided to essentially redesign it.

PART 3. Manual Conversion of ChatGPT Solution to Working Java Code
Here is the essentially modified code. I created 3 java classes: Period.java, Residence.java, and Problem.java.

Period.java

Residence.java

Problem.java

This main test is basically the same as in ChatGPT’ code just I parameterized “applicationDate” and “lookbackYears”.

My execution results:

