UServ Product Derby Case Study

Date: January 30, 2015

Author: Sapiens DECISION Professional Services Team

For more information please contact us at info@sapiens.com
Table of Contents

1. **Introduction** .. 1
 1.1 The Challenge in Business System Development .. 1
 1.2 The Opportunity and Approach ... 2
2. **The Problem Description** ... 3
 2.1 Background: UServ Financial Services ... 3
 2.2 The Process Model: Vehicle Insurance Application Process ... 3
 2.3 Sub-process 1: Validate Application Information ... 4
 2.4 Sub-process 2: Evaluate Auto Policy Eligibility ... 4
 2.5 Sub-process 3: Calculate Auto Policy Premium .. 4
3. **The Solution: Sapiens DECISION** ... 6
 3.1 The Decision Model ... 6
 3.2 Rule Family View ... 8
 3.3 Glossary ... 9
 3.4 Meta Level Data ... 10
 3.5 Decision Flow .. 12
 3.6 Knowledge Source Traceability ... 12
 3.7 Governance ... 13
 3.8 Testing Rule Family Views .. 13
 3.9 UServ Project Methodology ... 14
4. **Scenario 1: The Grandfathered Rule Sets, Versioning, and Model Re-Use** 15
 4.1 Requirement Version 1: Sara & Spencer .. 15
 4.2 Requirement Version 2: Mark Houston & Angie .. 16
 4.3 Re-rate of Sara & Spencer (Cars 1 Year Older) .. 19
5. **Scenario 2: Eligibility Within and Outside an Elite Client Relationship Scenario** 22
 5.1 Within Elite Client Scenario ... 22
 5.2 Outside Elite Client Scenario .. 25
 5.3 Deployment into Execution Environments ... 27
6. **Modeling Assumptions** ... 28
7. **About Sapiens DECISION** .. 29
8. **About Sapiens** ... 30
9. **References** .. 31
10. **Appendix: Decision Models in DMN Notation** ... 32

www.sapiensdecision.com
1 Introduction

1.1 The Challenge in Business System Development

IT appears to have resolved many of the major challenges facing business system development today; with tools currently at their disposal they can rapidly build even the most complex and scalable of systems. Advanced technologies, including business rule systems, have been great at helping IT implement business systems faster, saving time and money.

The problem that it has not solved – that it has in fact exposed – is how does the business discover, validate and manage the business policies, regulations, and operational decisions that exist in and across their business systems; these are what we collectively call the BUSINESS LOGIC that underlies our business systems.

![Figure 1. The Challenge in Business System Development](image)

Discovering the business logic, recording it, and expressing it to IT, so that they can effectively implement it into systems; remains a puzzle to this day. Further, it is still the greatest challenge to us in building, implementing and managing, over time, our business systems.
1.2 The Opportunity and Approach
Creating a shared language, one that can allow us to easily and accurately express the business logic in a way that the business can author, but that is rigorous and accurate enough for IT to understand and implement; thus joining business and IT in a common understanding is the role of The Decision Model. Sapiens DECISION implements the model in a repository so robust that it enables the enterprise to discover, author, manage, and deploy its logic with minimal support from IT.

![Figure 2. The Value of The Decision Model](image)

We will illustrate this shared understanding, implementing The Decision Model (TDM) methodology with Sapiens DECISION by applying this to the UServ Product Derby Case Study.
2 The Problem Description

2.1 Background: UServ Financial Services
UServ Financial Services provides a full service portfolio of financial products (e.g., Auto Insurance). UServ rewards clients’ loyalty as they increase their portfolio. UServ relies on its business rules to manage risk while providing on-going services to customers whose portfolios are profitable, yet violate the eligibility rules of individual products.

This case study details UServ’s business rules and scenarios for its Vehicle Insurance Products. The rules address eligibility, pricing and cancellation policies at both the individual product and client portfolio level, differentiating the basic business rules from those that apply to Preferred and Elite clients.

2.2 The Process Model: Vehicle Insurance Application Process
The base business rules are dependent on both the type of vehicle being insured and the characteristics of the persons covered by the policy. The process is instantiated when any one of three triggers occurs: 1) an application sent from a client is received by UServ, 2) an End of Policy (Renewal) event occurs, and 3) after a manual review has been performed by UServ’s underwriting team.

Figure 3. Vehicle Insurance Application Process
2.3 Sub-process 1: Validate Application Information
The information in the application is validated based upon UServ’s standards prior to processing. This sub-process is assumed to be out of scope for this project, and therefore will not be covered in this document.

2.4 Sub-process 2: Evaluate Auto Policy Eligibility
A client’s eligibility for auto insurance is determined by a scoring system based on the risk rating for various categories. The lower the client’s eligibility score, the better the eligibility rating. The second sub-process, Evaluate Auto Policy Eligibility, includes decisions that receive data inputs from the client application that result in an outcome that determines if the client’s application is eligible, not eligible, or requires manual review.

![Evaluate Auto Policy Eligibility Diagram]

Figure 4. Evaluate Auto Policy Eligibility

2.5 Sub-process 3: Calculate Auto Policy Premium
If the client is eligible for auto insurance, then the annual premium must be calculated. The third sub-process, Calculate Auto Policy Premium, includes decisions that leverage the outputs from the Evaluate Auto Policy Eligibility sub-process to calculate the auto policy premium for each individual or applicant covered by the policy.

![Calculate Auto Policy Premium Diagram]

Figure 5. Calculate Auto Policy Premium

www.sapiensdecision.com
In total, the process covers nine Decision Tasks detailed in Table 1.

<table>
<thead>
<tr>
<th>Decision Task Name</th>
<th>Decision Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Auto Policy Annual Premium</td>
<td>Calculates the annual premium for each car on the auto policy after the client is found to be eligible for auto insurance. Also accounts for any eligible auto discounts by adding all applicable percentages and discounting the amount from the total Auto Policy Premium.</td>
</tr>
<tr>
<td>Calculate Auto Policy Eligibility Score</td>
<td>Calculates the eligibility score for each automobile covered by the policy based upon the vehicle's Potential Theft Category and Potential Occupant Injury Category. Note: the High Theft Probability Auto List is maintained by UServ's Risk Management and provided as input to the eligibility rating process.</td>
</tr>
<tr>
<td>Calculate Client Segment Score</td>
<td>Scores a client based upon their status of preferred, elite, or both. A Preferred Client's portfolio includes at least three products from different product families in the UServ financial services offerings. An Elite Client falls within UServ's top 1% of clients based on revenue (there are approximately 25,000 Elite Clients). Note: Elite Client information is provided by UServ to the application.</td>
</tr>
<tr>
<td>Calculate Driver Policy Annual Premium</td>
<td>Calculates the annual premium for each driver on the policy after the client is found to be eligible for auto insurance. It considers the driver's location, marital status, Driving Record Category, and Driver Age Category in factoring the appropriate premium amount.</td>
</tr>
<tr>
<td>Calculate Driver Policy Eligibility Score</td>
<td>Calculates the eligibility score for each driver covered by the application or policy based upon the Driver Age Category and Driving Record Category. The Driver Age Category can be impacted by whether a driver has taken a certified training course.</td>
</tr>
<tr>
<td>Calculate Premium After Client Segment Discount</td>
<td>Applies market segment discounts after all the individual car and driver premiums with auto discounts have been calculated.</td>
</tr>
<tr>
<td>Calculate Premium Before Client Segment Discount</td>
<td>Calculates the policy's annual premium which is the sum of the Driver Policy Premium, the Auto Policy Premium, and any eligible Auto Discounts applied to the policy.</td>
</tr>
<tr>
<td>Determine Auto Policy Eligibility Status</td>
<td>Determines a client's eligibility for auto insurance using a scoring system based on the risk rating for various categories. The lower the score, the better the eligibility rating.</td>
</tr>
<tr>
<td>Determine Client Relationship Longevity Status</td>
<td>Determines whether a client has a long term relationship with UServ. Clients who are determined to be in a long-term relationship (have maintained a portfolio for at least 15 years) with UServ, are always eligible for auto insurance, as is every person and car directly covered by a long term client's auto policy.</td>
</tr>
</tbody>
</table>
3 The Solution: Sapiens DECISION

The Decision Model is a template for perceiving, organizing, and managing the business logic behind a business decision (von Halle & Goldberg, 2010). From the process model we can look at the details of the BPMN decision task Determine Auto Policy Eligibility Status.

![Decision Model Diagram]

Figure 6. Determine Auto Policy Eligibility Status

This step relates to one Decision View (DV) that encompasses the business logic for the task.

3.1 The Decision Model

The business statement or business rules can be translated into a structural element of a Decision Model (DM). The Decision Model and its principles are fully represented by its Rule Family View table(s) and the Decision Model diagram. Note that the Decision Model diagram only illustrates the Decision Model’s structure and not the full content.

The Decision Model diagram begins with an octagonal shape that represents the entire business decision. This octagonal shape relates to tasks within the business process model and to steps within use cases, at the exact place in the model where the business decision is in play.

Further, the business decision shape connects to business requirements, tactics, and objectives (in this project we linked only to business requirements); while the other shapes in the diagram represent Rule Family Views.
Figure 7. Determine Client Relationship Longevity Status Decision Model
3.2 Rule Family View

The essential structural element of a Decision Model is a two-dimensional table, called a Rule Family View (RFV), relating the conditions to one – and only one – corresponding conclusion.

![Rule Family View Example](image)

Figure 8. Determine Auto Policy Eligibility Status Rule Family View

The above Rule Family View has two condition columns that are tested to arrive at the conclusion column. There is also a column for an Informational Message to provide insights on the conclusion(s) derived from the tests of the Rule Family View.

The condition column headings contain the names of the facts being tested (Client Relationship Longevity Status and Policy Eligibility Score). The conclusion column (shaded in light blue) heading contains the name of the conclusion being reached (Auto Policy Eligibility Status).

The rows in the Rule Family View table are the set of business logic belonging to the Rule Family View. The populated conditions in each row of the Rule Family View are ANDed together to reach the conclusion (no ORs are permitted among populated conditions). Each Rule Family View adheres to a full set of principles (e.g., a Rule Family View can have only one conclusion column). In addition, each Rule Family View can be related to other Rule Family Views and these relationships are carefully managed.

Rule Family Views can be – and this is highly encouraged – reused in multiple Decision Views. In the following example, the Auto Potential Occupant Injury Rating and Auto Potential Theft Rating Rule Family Views are being reused in the two Decision Views shown.
3.3 Glossary
Sapiens DECISION provides enterprise capability with both centralized and federated glossary management. The glossary maintains all of the approved Fact Type (FT) names and descriptions so that there is no redundancy in the system, and enables reusability of common Fact Types.
3.4 Meta Level Data
The Additional Info Tab in Sapiens DECISION provides additional insights into the Decision View and Rule Family View concerning other objects (e.g., Decision Views, Rule Family Views, Fact Types) the current object is associated with. Further, the Additional Info Tab provides information concerning sizing, related items, impact analysis, statistics, audit trail, notes, and links.
Figure 11. Auto Policy Eligibility Status Additional Info Tab Rule Family View

Figure 12. Calculate Premium After Client Segment Discount Additional Info Tab Decision View

www.sapiensdecision.com
3.5 Decision Flow
Finally, to execute the end-to-end process within the Sapiens DECISION tool, a feature called Decision Flows (DF) allows the modelers to input the data and execute a sequence of Decision Views to generate the results, without any manual steps. An example of a Decision Flow will be detailed in the scenario exercises below.

3.6 Knowledge Source Traceability
To determine that the requirements in their totality have been modeled and to be able to show which requirements mandate a particular model, traceability has to be maintained. The actual linking is accomplished via hyperlinks both from the tool to external sources and from external sources into particular models at a granular level.

The table below shows traceability between the Decision Tasks in the BPMN process model and the Decision Models, between the Decision Models and the Rule Family Views, and between the Rule Family Views and the business requirements (DMN Knowledge Source).

<table>
<thead>
<tr>
<th>Decision View</th>
<th>Decision Task Traceability</th>
<th>Rule Family View</th>
<th>RFV Knowledge Source Slice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Client Segment Score (Base)</td>
<td>1:1 Calculate Client Segment Score</td>
<td>Base : Client Segment Score</td>
<td>1:2.2.3.1.3 Client Segment Scoring</td>
</tr>
<tr>
<td>Calculate Client Segment Score (Base)</td>
<td>1:1 Calculate Client Segment Score</td>
<td>Base : Preferred Client Indicator</td>
<td>1:2.2.3.1.3 Client Segment Scoring</td>
</tr>
<tr>
<td>Calculate Client Segment Score (Base)</td>
<td>2:1 Calculate Client Segment Score</td>
<td>Base : Client Segment Score</td>
<td>1:2.2.3.1.3 Client Segment Scoring</td>
</tr>
<tr>
<td>Calculate Client Segment Score (Base)</td>
<td>2:1 Calculate Client Segment Score</td>
<td>Base : Preferred Client Indicator</td>
<td>1:3.1 Grandfathered Rule Sets</td>
</tr>
</tbody>
</table>

Table 2. Traceability across versions, Grandfathered Scenario

As can be seen, traceability is also maintained across versions. The table shows the transitions of the Grandfathered Scenario. Specifically, the Preferred Client Indicator Rule Family View Version 2 is associated with Version 2 of the Calculate Client Segment Score Decision. Similar traceability is maintained for Preferred Client Indicator with the Decision Calculate Premium After Client Segment Discount.

Below is another example showing a section of the requirements that corresponds to a particular Rule Family View version, Decision Model and BPMN Decision Task (in this case, a one-to-one relationship but many-to-many relationships are also supported).
2.2.1.1 Potential Theft Category

<table>
<thead>
<tr>
<th>Decision View</th>
<th>Decision Task</th>
<th>V</th>
<th>Rule Family View</th>
<th>RFV Knowledge Source Slice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Auto Policy Eligibility Score (Base)</td>
<td>1.1 Calculate Auto Policy Eligibility Score</td>
<td></td>
<td>Base: Auto Potential Theft Rating</td>
<td>1.0 2.2.1.1 Potential Theft Category</td>
</tr>
</tbody>
</table>

If the car is a convertible, then the car’s potential theft rating is high.

If the car’s price is greater than $45,000, then the car’s potential theft rating is high.

If the car model is on the list of “High Theft Probability Auto”, then the car’s potential theft rating is high.

If all of the following are true, then the car’s potential theft rating is moderate.

- car’s price is between $20,000 and $45,000,
- car model is not on the list of “High Theft Probability Auto”

If all of the following are true, then the car’s potential theft rating is low:

- car’s price is less than $20,000
- car model is not on the list of “High Theft Probability Auto”

Table 3. Traceability from Requirements to a Rule Family View Version, Decision Model and BPMN Decision Task

A workflow to incorporate requirement changes can further utilize Sapiens DECISION’s capability to analyze the text of a Knowledge Source using the Text Analyzer in order to identify specific terms in the glossary that are present in the Knowledge Source.

3.7 Governance

Sapiens DECISION has extensive enterprise-scale governance capabilities. A discussion of these features is outside the scope of this document. Please contact Sapiens for additional details.

3.8 Testing Rule Family Views

The rigor of The Decision Model allows for exhaustive testing and validation of the business logic in the Decision Model to the granularity of each row within each Rule Family View.
Figure 13. Executed Test Results for Determine Auto Policy Eligibility Status Rule Family

Within Sapiens DECISION, test cases can be generated or created at the Rule Family View level or at the Decision View level to test and validate the business logic content in the Rule Family View and in the Decision View. Since Decision Models are designed for reuse, associated test cases are also available for reuse when the corresponding Decision Model is reused in other systems, Decision Models, or updated.

3.9 UServ Project Methodology

The project team employed the QuickSTEP™ methodology which integrates Agile methods of business process modeling, decision modeling and business rule mining into a comprehensive business requirements management approach.
4 Scenario 1: The Grandfathered Rule Sets, Versioning, and Model Re-Use

The purpose of this scenario, besides exercising the auto insurance eligibility and pricing business rules, is to establish business rules for determining preferred clients, apply them, and then change the business rules to be more stringent. The original set of rules continues to apply to clients who qualified as premium clients under those rules. The new rule set applies to new clients.

Below are the models that show the implementation of the Preferred Client business logic change. Each version of the business logic is implemented in different versions of the model. Business logic for each is implemented by a Rule Family View. Each version of the model can be invoked as necessary (Rule Family View Version 1.0 and Version 2.0).

4.1 Requirement Version 1: Sara & Spencer

Requirement Version 1 for determining a Preferred Client

A Preferred Client has a portfolio that includes at least three products families. For example, a Preferred Client may have a portfolio that includes vehicle and life insurance policies and an Individual Retirement Account (IRA). A client is not a Preferred Client if their portfolio includes only three vehicle insurance policies or four IRAs.

The execution of the data inputs for the Grandfathered Rule Set Version 1 is below. In Version 1 Sara is deemed a Preferred Client because she obtains at least 3 product families from UServ.

As shown below, Sara’s Premium After Client Segment Discount was calculated as $2,380.50.
4.2 Requirement Version 2: Mark Houston & Angie

Requirement Version 2 for determining a Preferred Client

A Preferred Client has a portfolio that includes an average of three product families over the prior rolling 12 month period. The configuration of the portfolio families can change over the period, so long as the average is three product families. New clients must maintain this average for a year before they are eligible.

In Version 2 another client, Angie, has the exact same profile as Sara, but applies after the Preferred Client logic change. Note that both sets of logic are available and they are invoked based on transaction date provided as input.
In the second version of the Preferred Client business logic, 2 Fact Types (Existing Preferred Client and Rolling 12 Month Average Product Count) were added to the Rule Family View. With these two Fact Types and the structure of the logic, UServ is able to distinguish between clients who are Preferred when they apply from those who are not.

Rule Family Views exist in the context of Decision Views. In this case the determination of Preferred Client status is part of the calculation of the annual insurance premium.
Below are the execution results for the two versions of the Decision View, each utilizing a different version of the Rule Family View. The premium in Version 1 is $2380.50 and the premium in Version 2 is $2630.50.
4.3 Re-rate of Sara & Spencer (Cars 1 Year Older)
The Honda Odyssey was initially rated at 10 years old with a calculated Auto Age Annual Premium of $250. The logic pertaining to the age of the automobile at 11 years old yields a calculated Auto Age Annual Premium of $0. The diagrams below illustrate the re-rate for Sara with her cars being a year older.

Figure 19. Decision View Comparison between Version 1 and Version 2

Figure 20. Rule Family View of Auto Age Annual Premium
Figure 21. Calculate Auto Policy Annual Premium Decision View

The test results below show the updated premium after Sara was re-rated.
Figure 22. Results of the Re-rate for the Cars (Annual Premium Amount is $2,175.50)
5 Scenario 2: Eligibility Within and Outside an Elite Client Relationship Scenario

This scenario exercises the business rules related to cars and drivers that are not eligible on their own, but are eligible when they are part of the portfolio owned by an Elite Client. When that person tries to establish their own portfolio, they are scored based on their own merit.

5.1 Within Elite Client Scenario

![Figure 23. Application Form (Root) Level Data Inputs](image)

![Figure 24. Auto Data Inputs](image)
Figure 25. Driver Data Inputs

Interim data is generated from the inputs of the Root, Auto, and Driver Data to come to a conclusion.

Figure 26. The Results of Within Elite Client Scenario

Below are the results from the Within Elite Client Scenario from the Decision Flow.
Figure 27. Vehicle Insurance Application Decision Flow Within Elite Client (Client is Eligible due to Long Term Relationship with UServ)

Figure 28. Evaluate Auto Policy Eligibility Decision Sub Flow Within Elite Client (Client is Eligible due to Long Term Relationship with UServ)

Figure 29. Calculate Auto Policy Premium Decision Sub Flow Within Elite Client (Client’s Premium is $2,020.00)
5.2 Outside Elite Client Scenario

Figure 30. Application Form (Root) Level Data Inputs

Figure 31. Auto Data Inputs
Figure 32. Driver Data Inputs

Below are the results from the Outside Elite Client Scenario from the Decision Flow.

Figure 33. Vehicle Insurance Application Decision Flow Outside Elite Client (Client’s application requires Manual Review)

Figure 34. Evaluate Auto Policy Eligibility Decision Sub Flow Outside Elite Client (Client’s application is in Underwriting Manual Review)
5.3 Deployment into Execution Environments

Sapiens DECISION provides a unique ability to generate and deploy code from the Decision Flows and Decision Views seamlessly to any rules engine, or other technology environment whether procedural or object-oriented code. The tool uses a release management mechanism and adapters that transform the Decision Models into appropriate code.

Sapiens DECISION is delivered with the option of using different adapters to generate code for rules engines such as Drools or IBM ODM, and for the Sapiens DECISION Execution Server (DES). In addition, the ability to generate code can include any programming environment (e.g., Java, SQL) or other text-based formats (e.g., XML) through the use of adapter kits.

This powerful deployment functionality assures consistency between the business logic as expressed in the designed decision models, and their execution in run-time. It also saves time and effort and greatly reduces risks at the deployment stage.

To illustrate the deployment of the UServ case study, the Decision Flows and Decision Models have been exported into Drools and executed via a SOAP service as shown below using the SoapUI tool.

![Figure 35. Executed Decision Flow using SoapUI tool](image-url)
6 Modeling Assumptions

- Preferred and Elite Statuses are not mutually exclusive.

- The data concerning the training course for the Young Driver or the Senior Driver will come over on the application at the time of submission.

- Only Automobiles and Drivers found Eligible will be priced for a policy premium.

- All car classifications are exclusive. For example, you cannot have a compact luxury car.

- We cannot get an accurate total policy premium without all of the data for each of Ray Meno’s 137 cars, only premium amounts for Shane Meno.

- Data Acceptance modeling was not done because the knowledge source explicitly states that the data validation rules are not provided. However we did include the Data Validation step in our process model because it was noted in the knowledge source.

- In the testing of the scenarios, if information is not given, the assumption is that the information is not applicable. For example, if the scenario in the knowledge source does not state whether a driver is married or not, it is assumed that they are single.
7 About Sapiens DECISION

Sapiens DECISION is an enterprise-grade platform that empowers business users to independently author business logic in a manner that can be understood by business, as well as by IT. The resulting logic can be deployed to existing rules engines, the Sapiens DECISION Execution Server (DES), and other execution technologies.

For the business users, Sapiens DECISION provides a fully governed, business-friendly decision modeling environment that allows logic reusability, validation and testing, and assures consistency between business requirements and their deployment and execution.

Sapiens DECISION implements The Decision Model (TDM), providing a strong framework and governance for authoring and deploying easy-to-understand, unambiguous, sharable, and maintainable, decision models.

While TDM notation predated DMN, Sapiens DECISION provides an alternate DMN view of any TDM model. The DMN views of the UServ Derby Decision Models are displayed in the appendix.

Sapiens DECISION is comprised of multiple components including:

- **Glossary**: represents the business Fact Types (or business-friendly terms) and their underlying models.
- **Decision Repository**: a repository of Decision Models comprised of conditions, conclusions, and their inferential relationships.
- **Testing Facility**: used to generate and execute test cases for Decision Models and Decision Flows. Test scripts may also be exported for integration and UAT testing, and test scripts may be imported from data sets for regression and what-if analysis.
- **Governance and Control**: a comprehensive framework of governance tools including workflow, access control, versioning, and approval management for all assets in the repository.
- **Release Management**: a set of management tools to manage the deployment of the decision logic into the execution environment.
8 About Sapiens

Sapiens International Corporation (NASDAQ and TASE: SPNS) is a leading global provider of software solutions for the insurance industry, with an emerging focus on the broader financial services sector. Sapiens offers core, end-to-end solutions to the global general insurance, property and casualty, life, pension and annuities, reinsurance and retirement markets, as well as business decision management software. The company has a track record of over 30 years in delivering superior software solutions to more than 130 financial services organizations. The Sapiens team of more than 900 professionals operates through our fully-owned subsidiaries in North America, the United Kingdom, EMEA and Asia Pacific.
9 References

10 Appendix: Decision Models in DMN Notation

Figure 36. Determine Client Relationship Longevity Status
Figure 37. Calculate Auto Policy Eligibility Score
Figure 38. Calculate Driver Policy Eligibility Score
Figure 39. Calculate Client Segment Score Version 2

Figure 40. Determine Auto Policy Eligibility Status
Figure 41. Calculate Driver Policy Annual Premium
Figure 42. Calculate Auto Policy Annual Premium

Figure 43. Calculate Premium Before Client Segment Discount
Figure 44. Calculate Premium After Client Segment Discount Version 2
We already have a Business Rules Management System. Why should we consider a Business Decision Management System?